This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277281 #20 Feb 16 2025 08:33:36 %S A277281 1,2,4,12,48,160,720,3360,13440,80640,403200,2217600,13305600, %T A277281 69189120,484323840,2905943040,19372953600,131736084480,846874828800, %U A277281 6436248698880,42908324659200,337903056691200,2477955749068800,18997660742860800,151981285942886400 %N A277281 Maximal coefficient (ignoring signs) in Hermite polynomial of order n. %H A277281 Vaclav Kotesovec, <a href="/A277281/b277281.txt">Table of n, a(n) for n = 0..715</a> %H A277281 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HermitePolynomial.html">Hermite Polynomial</a>. %H A277281 Wikipedia, <a href="http://en.wikipedia.org/wiki/Hermite_polynomials">Hermite polynomials</a>. %e A277281 For n = 5, H_5(x) = 32*x^5 - 160*x^3 + 120*x. The maximal coefficient (ignoring signs) is 160, so a(5) = 160. %t A277281 Table[Max@Abs@CoefficientList[HermiteH[n, x], x], {n, 0, 25}] %o A277281 (PARI) a(n) = vecmax(apply(x->abs(x), Vec(polhermite(n)))); \\ _Michel Marcus_, Oct 09 2016 %o A277281 (Python) %o A277281 from sympy import hermite, Poly %o A277281 def a(n): return max(map(abs, Poly(hermite(n, x), x).coeffs())) # _Indranil Ghosh_, May 26 2017 %Y A277281 Cf. A059343, A277280 (with signs). %K A277281 nonn %O A277281 0,2 %A A277281 _Vladimir Reshetnikov_, Oct 08 2016