This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277303 #9 Oct 25 2016 21:15:43 %S A277303 1,5,90,2425,80630,3065810,128271540,5774538945,275743894750, %T A277303 13832116773110,723891526915820,39323723086794730,2208811824884144540, %U A277303 127904686371063157700,7617441454740093233000,465691699545009287055825,29179499379365501297165550,1871486497257264286902367950,122731222232573572625823907900,8222122259910817121846641763950,562251437460415648354364719018900 %N A277303 G.f. satisfies: A(x - 4*A(x)^2) = x + A(x)^2. %H A277303 Paul D. Hanna, <a href="/A277303/b277303.txt">Table of n, a(n) for n = 1..300</a> %F A277303 G.f. A(x) also satisfies: %F A277303 (1) A(x) = x + 5 * A( x/5 + 4*A(x)/5 )^2. %F A277303 (2) A(x) = -x/4 + 5/4 * Series_Reversion(x - 4*A(x)^2). %F A277303 (3) R(x) = -4*x + 5 * Series_Reversion(x + A(x)^2), where R(A(x)) = x. %F A277303 (4) R( sqrt( x/5 - R(x)/5 ) ) = 4*x/5 + R(x)/5, where R(A(x)) = x. %F A277303 a(n) = Sum_{k=0..n-1} A277295(n,k) * 4^k * 5^(n-k-1). %e A277303 G.f.: A(x) = x + 5*x^2 + 90*x^3 + 2425*x^4 + 80630*x^5 + 3065810*x^6 + 128271540*x^7 + 5774538945*x^8 + 275743894750*x^9 + 13832116773110*x^10 +... %o A277303 (PARI) {a(n) = my(A=[1], F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); A[#A] = -polcoeff(subst(F, x, x - 4*F^2) - F^2, #A) ); A[n]} %o A277303 for(n=1, 30, print1(a(n), ", ")) %Y A277303 Cf. A277295, A213591, A275765, A276360, A276361, A276362, A276363. %Y A277303 Cf. A277300, A277301, A277302, A277304, A277305, A277306, A277307, A277308, A277309. %Y A277303 Cf. A276364. %K A277303 nonn %O A277303 1,2 %A A277303 _Paul D. Hanna_, Oct 09 2016