cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277323 Even bisection of A260443 (the odd terms): a(n) = A260443(2*n).

This page as a plain text file.
%I A277323 #14 Apr 06 2017 02:34:37
%S A277323 1,3,5,15,7,75,35,105,11,525,245,2625,77,3675,385,1155,13,5775,2695,
%T A277323 128625,847,643125,18865,202125,143,282975,29645,1414875,1001,444675,
%U A277323 5005,15015,17,75075,35035,15563625,11011,346644375,2282665,108945375,1859,544726875,15978655,12132553125,121121,3813088125,2697695
%N A277323 Even bisection of A260443 (the odd terms): a(n) = A260443(2*n).
%H A277323 Antti Karttunen, <a href="/A277323/b277323.txt">Table of n, a(n) for n = 0..1024</a>
%F A277323 a(n) = A260443(2*n).
%F A277323 a(0) = 1; for n >= 1, a(n) = A003961(A260443(n)).
%F A277323 Other identities. For all n >= 0:
%F A277323 A007949(a(n)) = A000035(n).
%F A277323 A112765(a(n)) is the interleaving of A000035 and A005811, probably A101979.
%t A277323 a[n_] := a[n] = Which[n < 2, n + 1, EvenQ@ n, Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1] &@ a[n/2], True, a[#] a[# + 1] &[(n - 1)/2]]; Table[a[2 n], {n, 0, 46}] (* _Michael De Vlieger_, Apr 05 2017 *)
%o A277323 (Scheme, two versions)
%o A277323 (define (A277323 n) (A260443 (* 2 n)))
%o A277323 (define (A277323 n) (if (zero? n) 1 (A003961 (A260443 n))))
%Y A277323 Cf. A000035, A005811, A007949, A101979, A112765, A260443, A277324.
%K A277323 nonn
%O A277323 0,2
%A A277323 _Antti Karttunen_, Oct 10 2016