This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277339 #9 Oct 12 2016 19:23:43 %S A277339 1,1,2,4,7,11,26,92,64,-1328,2272,86912,-157706,-7271042,17815604, %T A277339 853696664,-2615703541,-133125019397,490820087366,26636670621548, %U A277339 -114924854384183,-6653655394184683,32904766004185814,2029701686588972068,-11322597283993315976 %N A277339 Exponential self-convolution of this sequence gives central binomial coefficients (A000984). %H A277339 Alois P. Heinz, <a href="/A277339/b277339.txt">Table of n, a(n) for n = 0..465</a> %F A277339 E.g.f.: exp(x)*sqrt(BesselI_0(2*x)). %p A277339 a:= proc(n) option remember; `if`(n=0, 1, ( %p A277339 binomial(2*n, n)-add(a(k)*a(n-k)* %p A277339 binomial(n, k), k=1..n-1))/2) %p A277339 end: %p A277339 seq(a(n), n=0..25); # _Alois P. Heinz_, Oct 12 2016 %t A277339 Table[SeriesCoefficient[Exp[x] Sqrt[BesselI[0, 2 x]], {x, 0, n}] n!, {n, 0, 25}] %o A277339 (PARI) x = 'x + O('x^30); serlaplace(exp(x)*sqrt(besseli(0, 2*x))) \\ _Michel Marcus_, Oct 09 2016 %Y A277339 Cf. A000984. %K A277339 sign %O A277339 0,3 %A A277339 _Vladimir Reshetnikov_, Oct 09 2016