cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277346 Maximal coefficient among squares of the polynomials in row n of the triangle of q-binomial coefficients.

This page as a plain text file.
%I A277346 #10 Feb 16 2025 08:33:36
%S A277346 1,1,2,3,8,16,48,119,390,1070,3656,10762,37834,116546,417540,1330923,
%T A277346 4836452,15823388,58130756,194168612,719541996,2444224858,9121965276,
%U A277346 31422225930,117959864244,411141476444,1551101290792,5460849893348,20689450250926,73474839110524
%N A277346 Maximal coefficient among squares of the polynomials in row n of the triangle of q-binomial coefficients.
%C A277346 q-binomial coefficients (a.k.a. Gaussian binomial coefficients) are polynomials in q with integer coefficients.
%H A277346 Vaclav Kotesovec, <a href="/A277346/b277346.txt">Table of n, a(n) for n = 0..100</a>
%H A277346 Eric W. Weisstein, <a href="https://mathworld.wolfram.com/q-BinomialCoefficient.html">q-Binomial Coefficient</a>.
%H A277346 Wikipedia, <a href="http://en.wikipedia.org/wiki/Q-binomial">q-binomial</a>.
%F A277346 Conjecture: a(n) ~ sqrt(3) * 2^(2*n+2) / (Pi^(3/2) * n^(5/2)). - _Vaclav Kotesovec_, Jan 07 2023
%t A277346 Table[Max[Table[Max[CoefficientList[FunctionExpand[QBinomial[n, k, q]^2], q]], {k, 0, n}]], {n, 0, 30}]
%Y A277346 Cf. A277218, A022166.
%K A277346 nonn
%O A277346 0,3
%A A277346 _Vladimir Reshetnikov_, Oct 09 2016