This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277349 #10 Jan 23 2019 20:00:18 %S A277349 1,0,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,1,1,1,0,0,0,1,2,1,1,0,0,1,2,2, %T A277349 1,1,0,1,3,3,2,1,1,1,3,4,3,2,1,2,4,5,5,3,2,2,5,7,6,5,3,3,6,9,9,7,5,4, %U A277349 7,11,12,10,7,6,9,14,16,14,11,8,11,17,20,19,15,12,14,21,26,25,21,17,18,26,32,33,28,23,24,32,41 %N A277349 Expansion of Product_{k>=1} 1/(1 - x^(6*k+1)). %C A277349 Number of partitions of n into parts larger than 1 and congruent to 1 mod 6. %H A277349 Robert Israel, <a href="/A277349/b277349.txt">Table of n, a(n) for n = 0..3000</a> %H A277349 <a href="/index/Par#partN">Index entries for related partition-counting sequences</a> %F A277349 G.f.: Product_{k>=1} 1/(1 - x^(6*k+1)). %F A277349 a(n) ~ Pi^(1/6) * Gamma(1/6) * exp(sqrt(n)*Pi/3) / (24*sqrt(3)*n^(13/12)). - _Vaclav Kotesovec_, Oct 10 2016 %e A277349 a(26) = 2, because we have [19, 7] and [13, 13]. %p A277349 N:= 100: %p A277349 G:= 1/mul(1-x^m,m=7..N,6): %p A277349 S:= series(G,x,N+1): %p A277349 seq(coeff(S,x,j),j=0..N); # _Robert Israel_, Jan 23 2019 %t A277349 CoefficientList[Series[(1 - x)/QPochhammer[x, x^6], {x, 0, 100}], x] %Y A277349 Cf. A016921, A087897, A109701 (partial sums), A117957, A277210, A277264. %K A277349 nonn %O A277349 0,27 %A A277349 _Ilya Gutkovskiy_, Oct 10 2016