cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277368 Numbers such that the number of their divisors divide the sum of their aliquot parts.

This page as a plain text file.
%I A277368 #18 Sep 08 2022 08:46:17
%S A277368 1,4,10,16,25,26,34,56,58,60,64,74,81,82,90,96,100,106,120,121,122,
%T A277368 132,146,178,184,194,202,204,216,218,226,234,248,274,276,289,298,306,
%U A277368 312,314,346,348,362,364,376,386,394,408,440,458,466,480,482,492,504,514
%N A277368 Numbers such that the number of their divisors divide the sum of their aliquot parts.
%C A277368 If p is a prime such that p == 2 (mod 3) then p^2 is a term. Bateman et al. (1981) proved that the asymptotic density of this sequence is 0. - _Amiram Eldar_, Jan 16 2020
%D A277368 Richard G. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer, 2004, chapter 2, p. 76.
%H A277368 Paolo P. Lava, <a href="/A277368/b277368.txt">Table of n, a(n) for n = 1..1000</a>
%H A277368 Paul T. Bateman, Paul Erdős, Carl Pomerance and E.G. Straus, <a href="https://doi.org/10.1007/BFb0096462">The arithmetic mean of the divisors of an integer</a>, in Marvin I. Knopp (ed.), Analytic Number Theory, Proceedings of a Conference Held at Temple University, Philadelphia, May 12-15, 1980, Lecture Notes in Mathematics, Vol. 899, Springer, Berlin - New York, 1981, pp. 197-220, <a href="https://math.dartmouth.edu/~carlp/PDF/31.pdf">alternative link</a>.
%F A277368 Solutions k to A000005(k) | A001065(k).
%e A277368 sigma(26) - 26 = 42 - 26 = 16, d(26) = 4 and 16 / 4 = 4.
%p A277368 with(numtheory): P:= proc(q) local n; for n from 1 to q do
%p A277368 if type((sigma(n)-n)/tau(n),integer) then print(n); fi; od; end: P(10^3);
%t A277368 Select[Range@ 520, Mod[DivisorSigma[1, #] - #, DivisorSigma[0, #]] == 0 &] (* _Michael De Vlieger_, Oct 14 2016 *)
%o A277368 (PARI) isok(n) = ((sigma(n) - n) % numdiv(n)) == 0; \\ _Michel Marcus_, Oct 11 2016
%o A277368 (Magma) [k:k in [1..550]| (DivisorSigma(1,k)-k) mod DivisorSigma(0,k) eq 0]; // _Marius A. Burtea_, Jan 16 2020
%Y A277368 Cf. A000005, A001065, A003601, A047727.
%K A277368 nonn,easy
%O A277368 1,2
%A A277368 _Paolo P. Lava_, Oct 11 2016