This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277379 #17 Feb 16 2025 08:33:36 %S A277379 1,1,2,10,40,296,1936,17872,164480,1820800,21442816,279255296, %T A277379 3967316992,59837670400,988024924160,17009993230336,318566665977856, %U A277379 6177885274406912,129053377688043520,2786107670662021120,64136976817284448256,1525720008470138454016 %N A277379 E.g.f.: exp(x/(1-x^2))/sqrt(1-x^2). %C A277379 Is this the same as A227545 (at least for n>=1)? %H A277379 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HermitePolynomial.html">Hermite Polynomial</a>. %H A277379 Wikipedia, <a href="http://en.wikipedia.org/wiki/Hermite_polynomials">Hermite polynomials</a>. %F A277379 a(n) = |H_n((1+i)/2)|^2 / 2^n = H_n((1+i)/2) * H_n((1-i)/2) / 2^n, where H_n(x) is n-th Hermite polynomial, i = sqrt(-1). %F A277379 D-finite with recurrence: (n+1)*(n+2)*(a(n) - n^2*a(n-1)) + (2*n^2+7*n+6)*a(n+1) + a(n+2) = a(n+3). %F A277379 a(n) ~ n^n * exp(sqrt(2*n)-n) / 2. - _Vaclav Kotesovec_, Oct 14 2016 %t A277379 Table[Abs[HermiteH[n, (1 + I)/2]]^2/2^n, {n, 0, 20}] %Y A277379 Cf. A000321, A000898, A059343, A062267, A067994, A227545, A277280, A277281, A277378. %K A277379 nonn %O A277379 0,3 %A A277379 _Vladimir Reshetnikov_, Oct 11 2016