cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277394 Lagrange inversion, or reversion, for divided power series with odd powers only.

This page as a plain text file.
%I A277394 #13 Mar 08 2024 01:36:55
%S A277394 1,-1,10,-1,-280,56,-1,15400,-4620,126,120,-1,-1401400,560560,-36036,
%T A277394 -17160,792,220,-1,190590400,-95295200,10090080,3203200,-126126,
%U A277394 -360360,-50050,1716,2002,364,-1
%N A277394 Lagrange inversion, or reversion, for divided power series with odd powers only.
%C A277394 Coefficients for partition polynomials for compositional inversion order-by-order of odd functions, e.g.f.s, or formal Taylor series f(x) = a1 x + a3 x^3/3! + a5 x^5/5! + ... .
%C A277394 The compositional inverse of f(x) is g(x)
%C A277394 = a1^(-1) [1] x
%C A277394 + a1^(-4) [-1 a3] x^3/3!
%C A277394 + a1^(-7) [10 a3^2 - 1 a1 a5] x^5/5!
%C A277394 + a1^(-10)[-280 a3^3 + 56 a1 a3 a5 - a1^2 a7] x^7/7!
%C A277394 + a1^(-13)[15400 a3^4 - 4620 a1 a3^2 a5 + a1^2 (126 a5^2 + 120 a3 a7) - a1^3 a9] * x^9/9! ... .
%t A277394 rows[nn_] := With[{s = InverseSeries[x + Sum[a[k] x^(2k+1)/(2k+1)!, {k, nn}] + O[x]^(2nn+2)]}, Table[(2n-1)! Coefficient[s, x^(2n-1) Product[a[w], {w, p}]], {n, nn}, {p, Reverse[Sort[Sort /@ IntegerPartitions[n-1]]]}]];
%t A277394 rows[5] // Flatten (* _Andrey Zabolotskiy_, Mar 07 2024 *)
%Y A277394 Cf. A133437, A134264, A134685, A133932, A145271, A176740 for other inversion formulas.
%K A277394 sign,easy,tabf
%O A277394 1,3
%A A277394 _Tom Copeland_, Oct 12 2016
%E A277394 Corrected and extended by _Andrey Zabolotskiy_, Mar 07 2024