cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277405 a(n) equals the constant term in the sum of all permutations of compositions of functions (1 + k*x) for k=1..n.

This page as a plain text file.
%I A277405 #26 Mar 08 2025 01:35:46
%S A277405 1,5,40,524,10776,327732,13920096,788050944,57348311040,5215111879680,
%T A277405 579420628853760,77220215372770560,12157472554474222080,
%U A277405 2232192933566250681600,472721150641130889523200,114371049117960857921126400,31350167446592485414541721600,9664519305841281076219121664000,3328880054333616589332111409152000,1273663039174670323519439513960448000
%N A277405 a(n) equals the constant term in the sum of all permutations of compositions of functions (1 + k*x) for k=1..n.
%C A277405 A277406(n) = (n!)^2 + a(n).
%C A277405 The sum of all permutations of the compositions of functions (1+k*x), for k=1..n, equals: (n!)^2*x + a(n); this sequence gives the constant term.
%F A277405 a(n) = Sum_{k=0..n-1} k!*(n-k)! * Sum_{i=0..n-k+1} (-1)^(n-i+1) * Stirling2(i,n-k+1) * Stirling1(n+1,i).
%e A277405 Illustration of initial terms.
%e A277405 a(1) = 1, the constant term of (1+x);
%e A277405 a(2) = 5, the constant term of the sum of permutations of compositions of functions (1+x) and (1+2*x): (1+x)o(1+2*x) + (1+2*x)o(1+x) = (2*x + 2) + (2*x + 3) = 4*x + 5.
%e A277405 a(3) = 40, the constant term of the sum of permutations of compositions of functions (1+x), (1+2*x), and (1+3*x): (1+x)o(1+2*x)o(1+3*x) + (1+x)o(1+3*x)o(1+2*x) + (1+2*x)o(1+1*x)o(1+3*x) + (1+2*x)o(1+3*x)o(1+1*x) + (1+3*x)o(1+1*x)o(1+2*x) + (1+3*x)o(1+2*x)o(1+1*x) = (6*x + 4) + (6*x + 5) + (6*x + 5) + (6*x + 9) + (6*x + 7) + (6*x + 10) = 36*x + 40.
%e A277405 etc.
%e A277405 Alternatively,
%e A277405 a(2) = 5 = Sum_{i=1..2} (1+i),
%e A277405 a(3) = 40 = Sum_{i=1..3, j=1..3, j<>i} (1 + i*(1+j)),
%e A277405 a(4) = 524 = Sum_{i=1..4, j=1..4, k=1..4, k<>j<>i, k<>i} (1 + i*(1 + j*(1+k))), etc.
%o A277405 (PARI) {a(n) = sum(k=0, n-1, k!*(n-k)! * sum(i=0, n-k+1, (-1)^(n-i+1) * stirling(i, n-k+1, 2) * stirling(n+1, i, 1)))}
%o A277405 for(n=1, 20, print1(a(n), ", "))
%Y A277405 Cf. A277406, A277407.
%K A277405 nonn
%O A277405 1,2
%A A277405 _Paul D. Hanna_, Oct 16 2016