This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277422 #19 Feb 16 2025 08:33:36 %S A277422 1,9,322,19446,1649688,180184120,24070390992,3801662863152, %T A277422 692979602529664,143184960501077376,33069665092749868800, %U A277422 8442378658666161822976,2360674573114695421197312,717531421372546588398529536,235551703250624390582942574592 %N A277422 a(n) = n!*LaguerreL(n, -8*n). %C A277422 In general, if m > 0 and a(n) = n!*LaguerreL(n, -m*n), then a(n) ~ sqrt(1/2 + (m+2)/(2*sqrt(m*(m+4)))) * (2+m+sqrt(m*(m+4)))^n * exp(n*(sqrt(m*(m+4))-m-2)/2) * n^n / 2^n. %C A277422 For m > 4, (-1)^n * n! * LaguerreL(n, m*n) ~ sqrt(1/2 + (m-2)/(2*sqrt(m*(m-4)))) * exp((m - 2 - sqrt(m*(m-4)))*n/2) * ((m - 2 + sqrt(m*(m-4)))/2)^n * n^n. - _Vaclav Kotesovec_, Feb 20 2020 %H A277422 G. C. Greubel, <a href="/A277422/b277422.txt">Table of n, a(n) for n = 0..250</a> %H A277422 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LaguerrePolynomial.html">Laguerre Polynomial</a> %H A277422 Wikipedia, <a href="https://en.wikipedia.org/wiki/Laguerre_polynomials">Laguerre polynomials</a> %F A277422 a(n) = n! * Sum_{k=0..n} binomial(n, k) * 8^k * n^k / k!. %F A277422 a(n) ~ sqrt(2 + 5/sqrt(6)) * (5 + 2*sqrt(6))^n * exp((-5 + 2*sqrt(6))*n) * n^n / 2. %t A277422 Table[n!*LaguerreL[n, -8*n], {n, 0, 20}] %t A277422 Flatten[{1, Table[n!*Sum[Binomial[n, k] * 8^k * n^k / k!, {k, 0, n}], {n, 1, 20}]}] %o A277422 (PARI) for(n=0, 30, print1(n!*sum(k=0,n, binomial(n,k)*(8)^k*n^k/k!), ", ")) \\ _G. C. Greubel_, May 16 2018 %o A277422 (Magma) [Factorial(n)*(&+[Binomial(n,k)*(8)^k*n^k/Factorial(k): k in [0..n]]): n in [0..20]]; // _G. C. Greubel_, May 16 2018 %Y A277422 Cf. A277373 (m=1), A277391 (m=2), A277392 (m=3), A277418 (m=4), A277419 (m=5), A277420 (m=6), A277421 (m=7). %Y A277422 Cf. A002720, A087912, A277382. %K A277422 nonn %O A277422 0,2 %A A277422 _Vaclav Kotesovec_, Oct 14 2016