cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277435 Decimal expansion of lim_{n->inf} (2 - sqrt(2)^^n)/log(2)^n, where x^^n denotes tetration.

This page as a plain text file.
%I A277435 #25 Feb 16 2025 08:33:36
%S A277435 6,3,2,0,9,8,6,6,1,0,5,0,8,2,9,2,5,0,3,5,5,4,5,0,6,4,5,9,9,0,7,8,0,8,
%T A277435 6,2,7,9,9,4,7,4,5,5,2,3,2,4,1,6,4,4,7,9,6,6,9,7,2,3,3,8,2,4,3,2,5,8,
%U A277435 6,1,6,2,7,6,1,5,0,9,6,2,1,4,7,0,9,1,7,6,6,4,9,4,2,6,6,7,7,3,7,1,6,3,7,9,4,6
%N A277435 Decimal expansion of lim_{n->inf} (2 - sqrt(2)^^n)/log(2)^n, where x^^n denotes tetration.
%C A277435 Tetration x^^n is defined recursively: x^^0 = 1, x^^n = x^(x^^(n-1)). Note that sqrt(2)^^inf = lim_{n->inf} sqrt(2)^^n = 2. Asymptotically, sqrt(2)^^n = 2 - O(log(2)^n). This constant is the coefficient in the O(log(2)^n) term. Furthermore, sqrt(2)^^n = 2 - a*log(2)^n + (a^2/(4*(1 - 1/log(2))))*log(2)^(2*n) + O(log(2)^(3*n)).
%H A277435 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PowerTower.html">Power Tower</a>
%H A277435 Wikipedia, <a href="http://en.wikipedia.org/wiki/Tetration">Tetration</a>
%F A277435 a = 2*sqrt(2)*A260691/(1-log(2)).
%e A277435 0.63209866105082925035545064599078...
%t A277435 RealDigits[SequenceLimit[1`200 Table[(2 - Power @@ Table[Sqrt[2], {n}])/Log[2]^n, {n, 1, 200}]], 10, 100][[1]]
%Y A277435 Cf. A198094, A260691.
%K A277435 nonn,cons
%O A277435 0,1
%A A277435 _Vladimir Reshetnikov_, Oct 14 2016