A277443 Square array A(n,k) (n>=1, k>=1) read by antidiagonals: A(n,k) is the number of n-colorings of the prism graph Y_k on 2k vertices.
0, 0, 0, 0, 2, 0, 0, 0, 18, 0, 0, 2, 12, 84, 0, 0, 0, 114, 264, 260, 0, 0, 2, 180, 2652, 1920, 630, 0, 0, 0, 858, 16080, 29660, 8520, 1302, 0, 0, 2, 1932, 119844, 367080, 198030, 28140, 2408, 0, 0, 0, 7074, 816984, 4843460, 4067280, 932862, 76272, 4104, 0, 0, 2, 18660, 5784492, 62682480, 85847910, 28576380, 3440024, 179424, 6570, 0
Offset: 1
Examples
Square array A(n,k) begins: 0, 0, 0, 0, 0, 0, 0, ... 0, 2, 0, 2, 0, 2, 0, ... 0, 18, 12, 114, 180, 858, 1932, ... 0, 84, 264, 2652, 16080, 119844, 816984, ... 0, 260, 1920, 29660, 367080, 4843460, 62682480, ... 0, 630, 8520, 198030, 4067280, 85847910, 1800687000, ...
Links
- N. L. Biggs, R. M. Damerell and D. A. Sands, Recursive families of graphs, Journal of Combinatorial Theory Series B Volume 12 (1972), 123-131. MR0294172
- Eric Weisstein's World of Mathematics, Prism Graph
- Wikipedia, Chromatic polynomial
Crossrefs
Formula
A(n,k) = (n^2-3n+3)^k+(n-1)((3-n)^k+(1-n)^k)+n^2-3n+1.
Comments