cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277451 Number of edges in geodesic dome generated from icosahedron by recursively dividing each triangle in 4.

This page as a plain text file.
%I A277451 #21 Nov 15 2016 06:58:01
%S A277451 1,30,120,480,1920,7680,30720,122880,491520,1966080,7864320,31457280,
%T A277451 125829120,503316480,2013265920,8053063680,32212254720,128849018880,
%U A277451 515396075520,2061584302080,8246337208320,32985348833280,131941395333120,527765581332480
%N A277451 Number of edges in geodesic dome generated from icosahedron by recursively dividing each triangle in 4.
%C A277451 The new triangles are generated by placing new vertices at the midpoints of each edge in the old triangle.
%H A277451 Colin Barker, <a href="/A277451/b277451.txt">Table of n, a(n) for n = 0..1000</a>
%H A277451 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (4).
%F A277451 a(n) = 1 if n=0, else 30*4^(n-1).
%F A277451 From _Colin Barker_, Oct 20 2016: (Start)
%F A277451 a(n) = 4*a(n-1) for n>1.
%F A277451 G.f.: (1+26*x) / (1-4*x). (End)
%e A277451 n = 1 is the icosahedron with 30 sides. After dividing each face in 4, there are 120 sides in the next iteration.
%t A277451 {1}~Join~NestList[4 # &, 30, 22] (* or *)
%t A277451 CoefficientList[Series[(1 + 26 x)/(1 - 4 x), {x, 0, 23}], x] (* _Michael De Vlieger_, Oct 21 2016 *)
%o A277451 (Python) a = [1] + [30 * 4 ** (n-1) for n in range(1,24)]
%o A277451 (PARI) Vec((1+26*x)/(1-4*x) + O(x^30)) \\ _Colin Barker_, Oct 20 2016
%Y A277451 A122973 is the number of vertices, A003947 is the number of faces starting from 20.
%K A277451 nonn,easy
%O A277451 0,2
%A A277451 _Jonah Caplan_, Oct 16 2016