This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277468 #9 Nov 06 2017 02:42:19 %S A277468 0,1,2,10,100,1216,17766,309744,6260360,143641600,3688352650, %T A277468 104786813440,3263080663404,110514370068480,4044232154193518, %U A277468 159019302501971968,6685886706336107536,299315231931854749696,14214873507079452102162,713784039156929684963328 %N A277468 E.g.f.: tanh(x)/(1+LambertW(-x)). %H A277468 G. C. Greubel, <a href="/A277468/b277468.txt">Table of n, a(n) for n = 0..385</a> %F A277468 a(n) ~ tanh(exp(-1)) * n^n. %t A277468 CoefficientList[Series[Tanh[x]/(1+LambertW[-x]), {x, 0, 25}], x] * Range[0, 25]! %t A277468 Flatten[{0, Table[2^(n+1)*(2^(n+1) - 1)*BernoulliB[n+1]/(n+1) + Sum[Binomial[n, k]*2^(k+1)*(2^(k+1) - 1) * BernoulliB[k+1]/(k+1)*(n-k)^(n-k), {k, 1, n-1}], {n, 1, 25}]}] (* _Vaclav Kotesovec_, Oct 28 2016 *) %o A277468 (PARI) x='x+O('x^50); concat([0], Vec(serlaplace(tanh(x)/(1 + lambertw(-x))))) \\ _G. C. Greubel_, Nov 05 2017 %Y A277468 Cf. A000312, A086331, A277467. %K A277468 nonn %O A277468 0,3 %A A277468 _Vaclav Kotesovec_, Oct 16 2016