This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277536 #35 Feb 16 2025 08:33:37 %S A277536 1,0,1,0,0,2,0,0,3,6,0,0,8,24,24,0,0,10,170,180,120,0,0,54,900,1980, %T A277536 1440,720,0,0,-42,6566,19530,21840,12600,5040,0,0,944,44072,224112, %U A277536 305760,248640,120960,40320,0,0,-5112,365256,2650536,4818744,4536000,2993760,1270080,362880 %N A277536 T(n,k) is the n-th derivative of the difference between the k-th tetration of x (power tower of order k) and its predecessor (or 0 if k=0) at x=1; triangle T(n,k), n>=0, 0<=k<=n, read by rows. %C A277536 T(n,k) is defined for all n,k >= 0. The triangle contains only the terms with k<=n. T(n,k) = 0 for k>n. %H A277536 Alois P. Heinz, <a href="/A277536/b277536.txt">Rows n = 0..140, flattened</a> %H A277536 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PowerTower.html">Power Tower</a> %H A277536 Wikipedia, <a href="https://en.wikipedia.org/wiki/Knuth%27s_up-arrow_notation">Knuth's up-arrow notation</a> %H A277536 Wikipedia, <a href="https://en.wikipedia.org/wiki/Tetration">Tetration</a> %F A277536 E.g.f. of column k>0: (x+1)^^k - (x+1)^^(k-1), e.g.f. of column k=0: 1. %F A277536 T(n,k) = [(d/dx)^n (x^^k - x^^(k-1))]_{x=1} for k>0, T(n,0) = A000007(n). %F A277536 T(n,k) = A277537(n,k) - A277537(n,k-1) for k>0, T(n,0) = A000007(n). %F A277536 T(n,k) = n * A295027(n,k) for n,k > 0. %e A277536 Triangle T(n,k) begins: %e A277536 1; %e A277536 0, 1; %e A277536 0, 0, 2; %e A277536 0, 0, 3, 6; %e A277536 0, 0, 8, 24, 24; %e A277536 0, 0, 10, 170, 180, 120; %e A277536 0, 0, 54, 900, 1980, 1440, 720; %e A277536 0, 0, -42, 6566, 19530, 21840, 12600, 5040; %e A277536 0, 0, 944, 44072, 224112, 305760, 248640, 120960, 40320; %e A277536 ... %p A277536 f:= proc(n) option remember; `if`(n<0, 0, %p A277536 `if`(n=0, 1, (x+1)^f(n-1))) %p A277536 end: %p A277536 T:= (n, k)-> n!*coeff(series(f(k)-f(k-1), x, n+1), x, n): %p A277536 seq(seq(T(n, k), k=0..n), n=0..12); %p A277536 # second Maple program: %p A277536 b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0, %p A277536 -add(binomial(n-1, j)*b(j, k)*add(binomial(n-j, i)* %p A277536 (-1)^i*b(n-j-i, k-1)*(i-1)!, i=1..n-j), j=0..n-1))) %p A277536 end: %p A277536 T:= (n, k)-> b(n, min(k, n))-`if`(k=0, 0, b(n, min(k-1, n))): %p A277536 seq(seq(T(n, k), k=0..n), n=0..12); %t A277536 f[n_] := f[n] = If[n < 0, 0, If[n == 0, 1, (x + 1)^f[n - 1]]]; %t A277536 T[n_, k_] := n!*SeriesCoefficient[f[k] - f[k - 1], { x, 0, n}]; %t A277536 Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten %t A277536 (* second program: *) %t A277536 b[n_, k_] := b[n, k] = If[n == 0, 1, If[k == 0, 0, -Sum[Binomial[n - 1, j]*b[j, k]*Sum[Binomial[n - j, i]*(-1)^i*b[n - j - i, k - 1]*(i - 1)!, {i, 1, n - j}], {j, 0, n - 1}]]]; %t A277536 T[n_, k_] := (b[n, Min[k, n]] - If[k == 0, 0, b[n, Min[k - 1, n]]]); %t A277536 Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, May 28 2018, from Maple *) %Y A277536 Columns k=0-2 give: A000007, A063524, A005727 (for n>1). %Y A277536 Main diagonal gives A000142. %Y A277536 Row sums give A033917. %Y A277536 T(n+1,n)/3 gives A005990. %Y A277536 T(2n,n) gives A290023. %Y A277536 Cf. A277537, A295027. %K A277536 sign,tabl %O A277536 0,6 %A A277536 _Alois P. Heinz_, Oct 19 2016