This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277552 #66 Nov 11 2016 09:43:28 %S A277552 3,5,11,127,1151,1361,19661,31469,156007,360749,370373,1357333, %T A277552 2010881,17051887,20831533,191913031,436273291,2300942869,3842611109, %U A277552 4302407713,10726905041,25056082543,304599509051,461690510543,1346294311331,1408695494197,1968188557063,2614941711251,13829048560417,19581334193189 %N A277552 Primes q with prime gap q - p of n-th record merit. %C A277552 The merit of the gap between consecutive primes p and q is (q-p)/log(p). %C A277552 This sequence is infinite (Westzynthius 1931). - _Charles R Greathouse IV_, Nov 10 2016 %F A277552 a(n) = A111870(n) + A111871(n). - _Charles R Greathouse IV_, Nov 11 2016 %t A277552 p = 2; q = 3; lmt = 0; lst = {}; While[p < 10^12, If[q > p + lmt*Log[p], AppendTo[lst, q]; Print[q]; lmt = (q - p)/Log[p]]; p = q; q = NextPrime@ p]; lst (* or *) %t A277552 (* set lst = the terms in A111870 *) NextPrime[ lst] (* _Robert G. Wilson v_, Nov 07 2016 *) %o A277552 (PARI) r=rm=0; p=2; forprime(q=3,, t=q-p; if(t>r, r=t; t/=log(p); if(t>rm, rm=t; print1(q", "))); p=q) \\ _Charles R Greathouse IV_, Nov 11 2016 %Y A277552 Cf. A111870, A111871. %K A277552 nonn %O A277552 1,1 %A A277552 _Bobby Jacobs_, Nov 07 2016 %E A277552 More terms from _Robert G. Wilson v_, Nov 07 2016