A277558 A variation on Recamán's sequence (A005132): to get a(n), we first try to subtract n from a(n-1): a(n) = a(n-1)-n if positive and not already in the sequence; if not then a(n) = a(n-1)+n-i, where i >= 0 is the smallest number such that a(n-1)+n-i has not already appeared.
0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, 25, 43, 62, 42, 63, 41, 18, 40, 15, 39, 66, 38, 67, 37, 68, 36, 69, 35, 70, 34, 71, 33, 72, 32, 73, 31, 74, 30, 75, 29, 76, 28, 77, 27, 78, 26, 79, 133, 188, 132, 189, 131, 190, 130, 191, 129, 192
Offset: 0
Keywords
Examples
a(23) = 18. To get a(24) we try 18-24, but that is negative; so we try 18+24 = 42, but 42 has already appeared; so we try 18+24-1, but 41 has also already appeared; so we try 18+24-2. 40 is positive and has not yet appeared, and so a(24) = 40.
Links
- Benjamin Chaffin, Table of n, a(n) for n = 0..10000
Comments