cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277568 Numbers k such that k/6^m == 2 (mod 6), where 6^m is the greatest power of 6 that divides k.

This page as a plain text file.
%I A277568 #10 Feb 09 2021 02:25:00
%S A277568 2,8,12,14,20,26,32,38,44,48,50,56,62,68,72,74,80,84,86,92,98,104,110,
%T A277568 116,120,122,128,134,140,146,152,156,158,164,170,176,182,188,192,194,
%U A277568 200,206,212,218,224,228,230,236,242,248,254,260,264,266,272,278
%N A277568 Numbers k such that k/6^m == 2 (mod 6), where 6^m is the greatest power of 6 that divides k.
%C A277568 Positions of 2 in A277544.
%C A277568 Numbers having 2 as rightmost nonzero digit in base 6.  This is one sequence in a 5-way splitting of the positive integers; the other four are indicated in the Mathematica program.  Every term is even; see A277572.
%H A277568 Clark Kimberling, <a href="/A277568/b277568.txt">Table of n, a(n) for n = 1..10000</a>
%F A277568 a(n) = 5n + O(log n). - _Charles R Greathouse IV_, Nov 03 2016
%t A277568 z = 260; a[b_] := Table[Mod[n/b^IntegerExponent[n, b], b], {n, 1, z}]
%t A277568 p[b_, d_] := Flatten[Position[a[b], d]]
%t A277568 p[6, 1] (* A277567 *)
%t A277568 p[6, 2] (* A277568 *)
%t A277568 p[6, 3] (* A277569 *)
%t A277568 p[6, 4] (* A277570 *)
%t A277568 p[6, 5] (* A277571 *)
%o A277568 (PARI) is(n)=(n/6^valuation(n,6))%6==2 \\ _Charles R Greathouse IV_, Nov 03 2016
%Y A277568 Cf. A277544, A277567, A277569, A277572.
%K A277568 nonn,easy
%O A277568 1,1
%A A277568 _Clark Kimberling_, Nov 01 2016