cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277571 Numbers k such that k/6^m == 5 (mod 6), where 6^m is the greatest power of 6 that divides k.

This page as a plain text file.
%I A277571 #13 Feb 14 2025 17:42:54
%S A277571 5,11,17,23,29,30,35,41,47,53,59,65,66,71,77,83,89,95,101,102,107,113,
%T A277571 119,125,131,137,138,143,149,155,161,167,173,174,179,180,185,191,197,
%U A277571 203,209,210,215,221,227,233,239,245,246,251,257,263,269,275,281
%N A277571 Numbers k such that k/6^m == 5 (mod 6), where 6^m is the greatest power of 6 that divides k.
%C A277571 Positions of 5 in A277544.
%C A277571 Numbers having 5 as rightmost nonzero digit in base 6.  This is one sequence in a 5-way splitting of the positive integers; the other four are indicated in the Mathematica program.
%H A277571 Clark Kimberling, <a href="/A277571/b277571.txt">Table of n, a(n) for n = 1..10000</a>
%F A277571 a(n) = 5n + O(log n). - _Charles R Greathouse IV_, Nov 03 2016
%t A277571 z = 260; a[b_] := Table[Mod[n/b^IntegerExponent[n, b], b], {n, 1, z}]
%t A277571 p[b_, d_] := Flatten[Position[a[b], d]]
%t A277571 p[6, 1] (* A277567 *)
%t A277571 p[6, 2] (* A277568 *)
%t A277571 p[6, 3] (* A277569 *)
%t A277571 p[6, 4] (* A277570 *)
%t A277571 p[6, 5] (* A277571 *)
%t A277571 Select[Range[300],Mod[#/6^IntegerExponent[#,6],6]==5&] (* _Harvey P. Dale_, Feb 14 2025 *)
%o A277571 (PARI) is(n) = Mod(n/6^valuation(n, 6), 6)==5 \\ _Felix Fröhlich_, Nov 02 2016
%Y A277571 Cf. A277544, A277567, A277570.
%K A277571 nonn,easy
%O A277571 1,1
%A A277571 _Clark Kimberling_, Nov 01 2016