This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277576 #21 Nov 22 2024 01:49:57 %S A277576 1,2,3,5,7,11,15,20,26,34,43,53,63,74,86,98,111,126,142,159,177,195, %T A277576 214,235,258,281,305,330,356,383,411,439,468,498,530,562,595,629,663, %U A277576 698,734,770,807,845,883,922,962,1003,1045,1087,1130,1174,1218,1263,1309,1356,1404,1453,1502,1552,1603,1654,1706,1759 %N A277576 a(1)=1; thereafter a(n) = A007916(a(n-1)). %C A277576 Non-perfect-powers (A007916) are numbers such that the exponents in their prime factorizations have GCD equal to 1. For each n we can construct a plane tree by replacing all positive integers at any level with their corresponding planar factorization sequences (A277564), and repeating this replacement until no numbers are left. The result will be a unique "pure" sequence or plane tree. Under this correspondence a(n) is the path tree ((((((...)))))) = string of n consecutive open brackets followed by the same number of closed brackets. %H A277576 Chai Wah Wu, <a href="/A277576/b277576.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..2480 from Gus Wiseman) %e A277576 The first forty plane trees: %e A277576 () 11(((((()))))) ((()()())) (((((((()()))))))) %e A277576 2(()) ((()(()))) ((((()(()))))) (()((()))) %e A277576 3((())) (((())())) (((((())())))) ((((()))())) %e A277576 (()()) ((((()())))) ((((((()())))))) 34(((((((((()))))))))) %e A277576 5(((()))) 15((((((())))))) (((()))()) (((())(()))) %e A277576 ((()())) (()()()) 26((((((((())))))))) ((()())()) %e A277576 7((((())))) (((()(())))) ((())(())) ((((()()())))) %e A277576 (()(())) ((((())()))) (((()()()))) ((((((()(()))))))) %e A277576 ((())()) (((((()()))))) (((((()(())))))) (((((((())())))))) %e A277576 (((()()))) 20(((((((()))))))) ((((((())()))))) ((((((((()())))))))) %t A277576 radicalQ[1]:=False;radicalQ[n_]:=SameQ[GCD@@FactorInteger[n][[All,2]],1]; %t A277576 rad[0]:=1;rad[n_?Positive]:=rad[n]=NestWhile[#+1&,rad[n-1]+1,Not[radicalQ[#]]&]; %t A277576 nn=2000;Scan[rad,Range[nn]];NestWhileList[rad,1,#<nn&] %o A277576 (Python) %o A277576 from itertools import islice %o A277576 from sympy import mobius, integer_nthroot %o A277576 def A277576_gen(): # generator of terms %o A277576 def iterfun(f,n=0): %o A277576 m, k = n, f(n) %o A277576 while m != k: m, k = k, f(k) %o A277576 return m %o A277576 def f(x): return int(1-sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length()))) %o A277576 a = 1 %o A277576 while True: %o A277576 yield a %o A277576 a = iterfun(lambda x:f(x)+a,a) %o A277576 A277576_list = list(islice(A277576_gen(),40)) # _Chai Wah Wu_, Nov 21 2024 %Y A277576 Cf. A007916, A277564, A276625, A004111 (rooted trees), A007097 (rooted paths). %K A277576 nonn %O A277576 1,2 %A A277576 _Gus Wiseman_, Oct 20 2016 %E A277576 Edited by _N. J. A. Sloane_, Nov 09 2016