A277577 a(n) is the number of primes of the form (6n+3) +/- 3^k +/- 1, 1<=k<(t-2) and t is the number of digits of (6n+3)'s balanced ternary representation.
4, 7, 7, 6, 6, 6, 9, 8, 8, 8, 9, 8, 8, 7, 6, 9, 8, 8, 5, 8, 9, 8, 10, 9, 10, 9, 9, 9, 8, 10, 11, 8, 10, 7, 6, 8, 8, 11, 9, 7, 8, 9, 8, 10, 9, 10, 8, 7, 5, 8, 10, 6, 10, 5, 5, 10, 7, 9, 9, 9, 8, 12, 10, 8, 11, 10, 9, 10, 10, 9, 11, 11, 12, 8, 8, 11, 10, 9, 9, 10, 10, 10, 8, 7, 12, 10, 8, 8, 8, 7, 9, 6, 9, 11, 10, 11, 8, 11, 10, 11, 9, 10, 10, 9, 8, 10, 11, 11, 8, 9, 9
Offset: 1
Examples
n=1: 6n+3=9. 9=(100)_bt. 1<=k<=(3-2)=1. When k=1, (6n+3)+/-3^1+/-1 = 5, 7, 11, 13, all primes. So a(1) = 4; n=2: 6n+3=15. 15=(1TT0)_bt. 1<=k<=(4-2)=2. When k=1, (6n+3)+/-3^1+/-1 = 11, 13, 17, 19, all primes; when k=2, (6n+3)+/-3^2+/-1 = 5, 7, 23, 25, three primes. Totals 7. So a(2) = 7.
Links
- Lei Zhou, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A196698.
Programs
-
Mathematica
BTDigits[m_Integer,g_] := Module[{n = m, d, sign, t = g}, If[n != 0, If[n > 0, sign = 1, sign = -1; n = -n]; d = Ceiling[Log[3, n]]; If[3^d - n <= ((3^d - 1)/2), d++]; While[Length[t] < d, PrependTo[t, 0]]; t[[Length[t] + 1 - d]] = sign; t = BTDigits[sign*(n - 3^(d - 1)), t]]; t]; Table[trib = 6*n + 3; t = BTDigits[trib,{}]; l = Length[t]; ct = 0; Do[If[PrimeQ[trib - 3^j - 1], ct++]; If[PrimeQ[trib - 3^j + 1], ct++]; If[PrimeQ[trib + 3^j + 1], ct++]; If[PrimeQ[trib + 3^j - 1], ct++], {j, 1, l - 2}]; ct, {n, 1, 111}]
Comments