cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277577 a(n) is the number of primes of the form (6n+3) +/- 3^k +/- 1, 1<=k<(t-2) and t is the number of digits of (6n+3)'s balanced ternary representation.

Original entry on oeis.org

4, 7, 7, 6, 6, 6, 9, 8, 8, 8, 9, 8, 8, 7, 6, 9, 8, 8, 5, 8, 9, 8, 10, 9, 10, 9, 9, 9, 8, 10, 11, 8, 10, 7, 6, 8, 8, 11, 9, 7, 8, 9, 8, 10, 9, 10, 8, 7, 5, 8, 10, 6, 10, 5, 5, 10, 7, 9, 9, 9, 8, 12, 10, 8, 11, 10, 9, 10, 10, 9, 11, 11, 12, 8, 8, 11, 10, 9, 9, 10, 10, 10, 8, 7, 12, 10, 8, 8, 8, 7, 9, 6, 9, 11, 10, 11, 8, 11, 10, 11, 9, 10, 10, 9, 8, 10, 11, 11, 8, 9, 9
Offset: 1

Views

Author

Lei Zhou, Oct 20 2016

Keywords

Comments

The first a few of a(n)=0 terms of this sequence appear on n=72030, 228439, 282059, 383424, 384204, 593477, 710787, 736541, 1057465, 1628226, 1831745, 1892512, 1922647, 2128995, 2244660, 2260650, 2276272, 2289706, 2374644, 2507484, 2633477, 2681747, 2695747, 2875824, 2889472, 2913659 up to n<=3000000.

Examples

			n=1: 6n+3=9. 9=(100)_bt. 1<=k<=(3-2)=1. When k=1, (6n+3)+/-3^1+/-1 = 5, 7, 11, 13, all primes. So a(1) = 4;
n=2: 6n+3=15. 15=(1TT0)_bt. 1<=k<=(4-2)=2. When k=1, (6n+3)+/-3^1+/-1 = 11, 13, 17, 19, all primes; when k=2, (6n+3)+/-3^2+/-1 = 5, 7, 23, 25, three primes.  Totals 7. So a(2) = 7.
		

Crossrefs

Cf. A196698.

Programs

  • Mathematica
    BTDigits[m_Integer,g_] :=
      Module[{n = m, d, sign, t = g},
       If[n != 0, If[n > 0, sign = 1, sign = -1; n = -n];
        d = Ceiling[Log[3, n]]; If[3^d - n <= ((3^d - 1)/2), d++];
        While[Length[t] < d, PrependTo[t, 0]];
        t[[Length[t] + 1 - d]] = sign;
        t = BTDigits[sign*(n - 3^(d - 1)), t]]; t];
    Table[trib = 6*n + 3; t = BTDigits[trib,{}]; l = Length[t]; ct = 0;
    Do[If[PrimeQ[trib - 3^j - 1], ct++];
      If[PrimeQ[trib - 3^j + 1], ct++]; If[PrimeQ[trib + 3^j + 1], ct++];
      If[PrimeQ[trib + 3^j - 1], ct++], {j, 1, l - 2}]; ct, {n, 1, 111}]