cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A277581 Goldbach's problem extended to squares of nonnegative differences of primes: smallest integer >= ((A112823(n) - A234345(n))^2)/n for n >= 2.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 5, 2, 4, 0, 1, 0, 3, 2, 3, 0, 1, 0, 2, 1, 15, 0, 5, 6, 2, 3, 12, 0, 1, 0, 11, 2, 2, 5, 3, 0, 9, 1, 1, 0, 1, 0, 1, 1, 20, 0, 3, 12, 1, 6, 7, 0, 4, 11, 1, 2, 16, 0, 1, 0, 6, 2, 1, 3, 2, 0, 14, 1, 1, 0, 1, 0, 13, 1, 1, 2, 2, 0, 5, 1, 11, 0, 2, 7, 1, 10, 4, 0
Offset: 2

Views

Author

Juri-Stepan Gerasimov, Oct 21 2016

Keywords

Comments

Where A112823(n) + A234345(n) = 2n and A112823(n) <= A234345(n) (or nonnegative differences of primes). If n is prime, then a(n) = 0.
Conjecture: 1 <= a(n) <= m for all n, where m is largest value of a(n), i.e., the sequence of records in a(n) {1, 5, 15, 20, ..., m} is finite.

Examples

			a(8) = 5 because ((A112823(8) - A234345(8))^2)/8 = ((5 - 11)^2)/8 < 5, where 5(prime) + 11(prime) = 2*8;
a(9) = 2 because ((A112823(9) - A234345(9))^2)/9 = ((7 - 11)^2)/9 < 2, where 7(prime) + 11(prime) = 2*9;
a(10) = 4 because ((A112823(10) - A234345(10))^2)/10 = ((7 - 13)^2)/10 < 4, where 7(prime) + 13(prime) = 2*10.
		

Crossrefs

Cf. A112823 (2 together with A002374), A234345, A277583 (Goldbach's problem extended to squares of prime gaps >= 2).
Showing 1-1 of 1 results.