A277588 Numbers k such that k/10^m == 1 mod 10, where 10^m is the greatest power of 10 that divides n.
1, 10, 11, 21, 31, 41, 51, 61, 71, 81, 91, 100, 101, 110, 111, 121, 131, 141, 151, 161, 171, 181, 191, 201, 210, 211, 221, 231, 241, 251, 261, 271, 281, 291, 301, 310, 311, 321, 331, 341, 351, 361, 371, 381, 391, 401, 410, 411, 421, 431, 441, 451, 461, 471
Offset: 1
Links
- Clark Kimberling, Table of n, a(n) for n = 1..10000
Programs
-
Maple
M:= 4: # to get all terms with <= M digits A:= sort([seq(seq(10^d*(10*x+1),x=0..10^(M-1-d)-1),d=0..M-2)]); # Robert Israel, Nov 07 2016
-
Mathematica
z = 460; a[b_] := Table[Mod[n/b^IntegerExponent[n, b], b], {n, 1, z}] p[b_, d_] := Flatten[Position[a[b], d]] p[10, 1] (* A277588 *) p[10, 2] (* A277589 *) p[10, 3] (* A277590 *) p[10, 4] (* A277591 *) p[10, 5] (* A277592 *) p[10, 6] (* A277593 *) p[10, 7] (* A277594 *) p[10, 8] (* A277595 *) p[10, 9] (* A277596 *) f[n_] := Block[{m = n}, While[ Mod[m, 10] == 0, m /= 10]; Mod[m, 10]]; Flatten@ Position[ Array[f, 500], 1] (* Robert G. Wilson v, Nov 06 2016 *)
-
PARI
is(n)=n && n/10^valuation(n,10)%10==1 \\ Charles R Greathouse IV, Jan 31 2017
Comments