cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277590 Numbers k such that k/10^m == 3 mod 10, where 10^m is the greatest power of 10 that divides n.

This page as a plain text file.
%I A277590 #10 Jan 31 2017 01:00:36
%S A277590 3,13,23,30,33,43,53,63,73,83,93,103,113,123,130,133,143,153,163,173,
%T A277590 183,193,203,213,223,230,233,243,253,263,273,283,293,300,303,313,323,
%U A277590 330,333,343,353,363,373,383,393,403,413,423,430,433,443,453,463,473
%N A277590 Numbers k such that k/10^m == 3 mod 10, where 10^m is the greatest power of 10 that divides n.
%C A277590 Positions of 3 in A065881.
%C A277590 Numbers having 3 as rightmost nonzero digit in base 10. This is one sequence in a 10-way splitting of the positive integers; the other nine are indicated in the Mathematica program.
%H A277590 Clark Kimberling, <a href="/A277590/b277590.txt">Table of n, a(n) for n = 1..10000</a>
%t A277590 z = 460; a[b_] := Table[Mod[n/b^IntegerExponent[n, b], b], {n, 1, z}]
%t A277590 p[b_, d_] := Flatten[Position[a[b], d]]
%t A277590 p[10, 1] (* A277588 *)
%t A277590 p[10, 2] (* A277589 *)
%t A277590 p[10, 3] (* A277590 *)
%t A277590 p[10, 4] (* A277591 *)
%t A277590 p[10, 5] (* A277592 *)
%t A277590 p[10, 6] (* A277593 *)
%t A277590 p[10, 7] (* A277594 *)
%t A277590 p[10, 8] (* A277595 *)
%t A277590 p[10, 9] (* A277596 *)
%o A277590 (PARI) is(n)=n && n/10^valuation(n,10)%10==3 \\ _Charles R Greathouse IV_, Jan 31 2017
%Y A277590 Cf. A277588, A277589, A277591-A277596.
%K A277590 nonn,easy,base
%O A277590 1,1
%A A277590 _Clark Kimberling_, Nov 05 2016