cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277595 Numbers k such that k/10^m == 8 mod 10, where 10^m is the greatest power of 10 that divides k.

This page as a plain text file.
%I A277595 #13 Sep 14 2018 12:34:32
%S A277595 8,18,28,38,48,58,68,78,80,88,98,108,118,128,138,148,158,168,178,180,
%T A277595 188,198,208,218,228,238,248,258,268,278,280,288,298,308,318,328,338,
%U A277595 348,358,368,378,380,388,398,408,418,428,438,448,458,468,478,480,488
%N A277595 Numbers k such that k/10^m == 8 mod 10, where 10^m is the greatest power of 10 that divides k.
%C A277595 Positions of 8 in A065881.
%C A277595 Numbers having 8 as rightmost nonzero digit in base 10. This is one sequence in a 10-way splitting of the positive integers; the other nine are indicated in the Mathematica program.
%H A277595 Clark Kimberling, <a href="/A277595/b277595.txt">Table of n, a(n) for n = 1..10000</a>
%t A277595 z = 460; a[b_] := Table[Mod[n/b^IntegerExponent[n, b], b], {n, 1, z}]
%t A277595 p[b_, d_] := Flatten[Position[a[b], d]]
%t A277595 p[10, 1] (* A277588 *)
%t A277595 p[10, 2] (* A277589 *)
%t A277595 p[10, 3] (* A277590 *)
%t A277595 p[10, 4] (* A277591 *)
%t A277595 p[10, 5] (* A277592 *)
%t A277595 p[10, 6] (* A277593 *)
%t A277595 p[10, 7] (* A277594 *)
%t A277595 p[10, 8] (* A277595 *)
%t A277595 p[10, 9] (* A277596 *)
%t A277595 fQ[n_]:=Module[{sp=Split[IntegerDigits[n]]},If[MemberQ[sp[[-1]],0],sp = Drop[ sp, -1]];MemberQ[sp[[-1]],8]]; Select[Range[500],fQ] (* _Harvey P. Dale_, Sep 14 2018 *)
%o A277595 (PARI) is(n)=n && n/10^valuation(n,10)%10==6 \\ _Charles R Greathouse IV_, Jan 31 2017
%Y A277595 Cf. A277588-A277594, A277596.
%K A277595 nonn,easy,base
%O A277595 1,1
%A A277595 _Clark Kimberling_, Nov 07 2016