cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A277598 (1/2)*A277591.

Original entry on oeis.org

2, 7, 12, 17, 20, 22, 27, 32, 37, 42, 47, 52, 57, 62, 67, 70, 72, 77, 82, 87, 92, 97, 102, 107, 112, 117, 120, 122, 127, 132, 137, 142, 147, 152, 157, 162, 167, 170, 172, 177, 182, 187, 192, 197, 200, 202, 207, 212, 217, 220, 222, 227, 232, 237, 242, 247
Offset: 1

Views

Author

Clark Kimberling, Nov 12 2016

Keywords

Crossrefs

Programs

  • Mathematica
    z = 260; a[b_] := Table[Mod[n/b^IntegerExponent[n, b], b], {n, 1, z}]
    p[b_, d_] := Flatten[Position[a[b], d]]
    p[10, 2]/2 (* A277597 *)
    p[10,4]/3 (* A277598 *)
    p[10,5]/5 (* A277599 *)
    p[10,6]/2 (* A277600 *)
    p[10,8]/2 (* A277601 *)

A277599 (1/5)*A277592.

Original entry on oeis.org

1, 3, 5, 7, 9, 10, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 30, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 50, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 70, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 90, 91, 93, 95, 97, 99, 100, 101, 103, 105, 107, 109, 110, 111, 113
Offset: 1

Views

Author

Clark Kimberling, Nov 12 2016

Keywords

Crossrefs

Programs

  • Mathematica
    z = 260; a[b_] := Table[Mod[n/b^IntegerExponent[n, b], b], {n, 1, z}]
    p[b_, d_] := Flatten[Position[a[b], d]]
    p[10, 2]/2 (* A277597 *)
    p[10,4]/3 (* A277598 *)
    p[10,5]/5 (* A277599 *)
    p[10,6]/2 (* A277600 *)
    p[10,8]/2 (* A277601 *)

A277600 (1/2)*A277593.

Original entry on oeis.org

3, 8, 13, 18, 23, 28, 30, 33, 38, 43, 48, 53, 58, 63, 68, 73, 78, 80, 83, 88, 93, 98, 103, 108, 113, 118, 123, 128, 130, 133, 138, 143, 148, 153, 158, 163, 168, 173, 178, 180, 183, 188, 193, 198, 203, 208, 213, 218, 223, 228, 230, 233, 238, 243, 248, 253
Offset: 1

Views

Author

Clark Kimberling, Nov 12 2016

Keywords

Crossrefs

Programs

  • Mathematica
    z = 260; a[b_] := Table[Mod[n/b^IntegerExponent[n, b], b], {n, 1, z}]
    p[b_, d_] := Flatten[Position[a[b], d]]
    p[10, 2]/2 (* A277597 *)
    p[10,4]/3 (* A277598 *)
    p[10,5]/5 (* A277599 *)
    p[10,6]/2 (* A277600 *)
    p[10,8]/2 (* A277601 *)
Showing 1-3 of 3 results.