cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277604 Array of coefficients T(k,n) of the formal power series A(k,x) read by upwards antidiagonals, where A(k,x) = sqrt(1 + 2*x*A(k,x) + (4*k+1)*x^2*(A(k,x))^2), k >= 0.

This page as a plain text file.
%I A277604 #54 Aug 10 2017 03:59:57
%S A277604 1,1,1,1,1,1,1,1,3,1,1,1,5,5,1,1,1,7,9,13,1,1,1,9,13,37,25,1,1,1,11,
%T A277604 17,73,81,61,1,1,1,13,21,121,169,301,125,1,1,1,15,25,181,289,841,729,
%U A277604 295,1,1,1,17,29,253,441,1801,2197,2549,625,1,1,1,19,33,337,625,3301,4913,10123,6561,1447,1
%N A277604 Array of coefficients T(k,n) of the formal power series A(k,x) read by upwards antidiagonals, where A(k,x) = sqrt(1 + 2*x*A(k,x) + (4*k+1)*x^2*(A(k,x))^2), k >= 0.
%C A277604 For k = 0 see A000012, for k = 1 see A098615, and for k = 2 see A200376.
%C A277604 It will be interesting using the formulae for k < 0 (attention: signed terms!). Especially for k = -1 see A157674.
%C A277604 If G is the g.f. of central binomial coefficients (see A000984) and B(k,x) = G(k*x^2), then B(k,x) = A(k,x)/(1+x*A(k,x)) and A(k,x) = B(k,x) / (1-x*B(k,x)) for k >= 0. - _Werner Schulte_, Aug 07 2017
%F A277604 A(k,x) = (x + sqrt(1 - 4*k*x^2))/(1 - (4*k+1)*x^2) for k >= 0.
%F A277604 T(k,0) = 1 and T(k,2*n+2) = (4*k+1)^(n+1)-2*(Sum_{i=0..n} A000108(i)*k^(i+1)* (4*k+1)^(n-i)), and T(k,2*n+1) = (4*k+1)^n for k >= 0 and n >= 0.
%F A277604 A(k,x) = 1/(1 - x - 2*k*x^2*C(k*x^2)), k >= 0, where C is the g.f. of A000108.
%F A277604 Conjecture: If B(k,n) satisfy B(k,0) = B(k,1) = 1 and B(k,n+2) = B(k,n+1) + k*B(k,n) for k >= 0 and n >= 0 (generalized Fibonacci numbers, see A015441) and G(k,x) = Sum_{n>=0} A000108(n)*B(k,n)*x^n for k >= 0, then you will have (1): A(k,x*G(k,x)) = G(k,x) and (2): G(k,x/A(k,x)) = A(k,x) for k >= 0. Especially for k = 1 see A098615 and for k = 2 see A200376.
%F A277604 Conjecture: T(k,2*n) = Sum_{i=0..n} A046521(n,i)*k^(n-i) for k, n >= 0. - _Werner Schulte_, Aug 02 2017
%F A277604 Recurrence: T(k,2*n+2) = (4*k+1)*T(k,2*n)-2*k^(n+1)*A000108(n) with initial value T(k,0) = 1 for k >= 0 and n >= 0. - _Werner Schulte_, Aug 09 2017
%F A277604 T(k,n) = Sum_{i=0..n} A111959(n,i)*k^((n-i)/2) for k >= 0 and n >= 0. - _Werner Schulte_, Aug 09 2017
%e A277604 The terms define the array T(k,n) for k >= 0 and n >= 0, i.e.,
%e A277604 k\n  0  1   2   3    4     5      6      7       8        9  . . .
%e A277604 0:   1  1   1   1    1     1      1      1       1        1  . . .
%e A277604 1:   1  1   3   5   13    25     61    125     295      625  . . .
%e A277604 2:   1  1   5   9   37    81    301    729    2549     6561  . . .
%e A277604 3:   1  1   7  13   73   169    841   2197   10123    28561  . . .
%e A277604 4:   1  1   9  17  121   289   1801   4913   28057    83521  . . .
%e A277604 5:   1  1  11  21  181   441   3301   9261   63071   194481  . . .
%e A277604 6:   1  1  13  25  253   625   5461  15625  123565   390625  . . .
%e A277604 7:   1  1  15  29  337   841   8401  24389  219619   707281  . . .
%e A277604 8:   1  1  17  33  433  1089  12241  35937  362993  1185921  . . .
%e A277604 9:   1  1  19  37  541  1369  17101  50653  567127  1874161  . . .
%e A277604 etc.
%Y A277604 Cf. A000012, A000045, A000108, A000984, A015441, A046521, A098615, A111959, A200376.
%K A277604 nonn,easy,tabl
%O A277604 0,9
%A A277604 _Werner Schulte_, Oct 29 2016