cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277613 Logarithmic derivative of the g.f. of the solid partitions A000293.

This page as a plain text file.
%I A277613 #13 Nov 21 2016 00:06:07
%S A277613 1,7,19,47,76,145,183,319,433,762,1068,1625,1457,511,-2696,-7617,
%T A277613 -12494,-8999,14802,78682,195984,363458,530289,574297,252976,-820475,
%U A277613 -3259007,-7929105,-15918795,-27966750,-42783874,-52969921,-37772397,47098898,278012363,759015293,1583148046,2729030066,3860814119,4015793914,1214574612,-7871995868,-27884564061,-63760120938,-117678872282,-182313402679,-228194585696,-183355932567,93528356566,836233409412,2360489258476,4956621402741,8577450776595,12176709992155,12572248705543,2874527812671,-29026344726969,-100513507605919,-229939345736773,-423043591887710,-643162163240861,-757839109104688,-458886747576888,831588355306815,4020413344163097,10249469548463477,20417504944664974,33937902760293134,46224437161712292,44445354551818961,1635692222011481,-129140996172417587
%N A277613 Logarithmic derivative of the g.f. of the solid partitions A000293.
%C A277613 Based on the solid partitions calculated by Suresh Govindarajan and listed in A000293.
%C A277613 Finding a formula for this sequence is an unsolved problem; at first it was thought to be A278403, where: Sum_{n>=1} A278403(n)*x^n/n = log( Product_{n>=1} 1/(1 - x^n)^(n*(n+1)/2) ).
%H A277613 Paul D. Hanna, <a href="/A277613/b277613.txt">Table of n, a(n) for n = 1..72</a>
%e A277613 L.g.f.: L(x) = x + 7*x^2/2 + 19*x^3/3 + 47*x^4/4 + 76*x^5/5 + 145*x^6/6 + 183*x^7/7 + 319*x^8/8 + 433*x^9/9 + 762*x^10/10 + 1068*x^11/11 + 1625*x^12/12 +...
%e A277613 such that
%e A277613 exp(L(x)) = 1 + x + 4*x^2 + 10*x^3 + 26*x^4 + 59*x^5 + 140*x^6 + 307*x^7 + 684*x^8 + 1464*x^9 + 3122*x^10 + 6500*x^11 + 13426*x^12 +...+ A000293(n)*x^n +...
%Y A277613 Cf. A000293, A278403.
%K A277613 sign
%O A277613 1,2
%A A277613 _Paul D. Hanna_, Nov 20 2016