This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277613 #13 Nov 21 2016 00:06:07 %S A277613 1,7,19,47,76,145,183,319,433,762,1068,1625,1457,511,-2696,-7617, %T A277613 -12494,-8999,14802,78682,195984,363458,530289,574297,252976,-820475, %U A277613 -3259007,-7929105,-15918795,-27966750,-42783874,-52969921,-37772397,47098898,278012363,759015293,1583148046,2729030066,3860814119,4015793914,1214574612,-7871995868,-27884564061,-63760120938,-117678872282,-182313402679,-228194585696,-183355932567,93528356566,836233409412,2360489258476,4956621402741,8577450776595,12176709992155,12572248705543,2874527812671,-29026344726969,-100513507605919,-229939345736773,-423043591887710,-643162163240861,-757839109104688,-458886747576888,831588355306815,4020413344163097,10249469548463477,20417504944664974,33937902760293134,46224437161712292,44445354551818961,1635692222011481,-129140996172417587 %N A277613 Logarithmic derivative of the g.f. of the solid partitions A000293. %C A277613 Based on the solid partitions calculated by Suresh Govindarajan and listed in A000293. %C A277613 Finding a formula for this sequence is an unsolved problem; at first it was thought to be A278403, where: Sum_{n>=1} A278403(n)*x^n/n = log( Product_{n>=1} 1/(1 - x^n)^(n*(n+1)/2) ). %H A277613 Paul D. Hanna, <a href="/A277613/b277613.txt">Table of n, a(n) for n = 1..72</a> %e A277613 L.g.f.: L(x) = x + 7*x^2/2 + 19*x^3/3 + 47*x^4/4 + 76*x^5/5 + 145*x^6/6 + 183*x^7/7 + 319*x^8/8 + 433*x^9/9 + 762*x^10/10 + 1068*x^11/11 + 1625*x^12/12 +... %e A277613 such that %e A277613 exp(L(x)) = 1 + x + 4*x^2 + 10*x^3 + 26*x^4 + 59*x^5 + 140*x^6 + 307*x^7 + 684*x^8 + 1464*x^9 + 3122*x^10 + 6500*x^11 + 13426*x^12 +...+ A000293(n)*x^n +... %Y A277613 Cf. A000293, A278403. %K A277613 sign %O A277613 1,2 %A A277613 _Paul D. Hanna_, Nov 20 2016