This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277614 #38 Apr 16 2023 12:33:49 %S A277614 1,1,3,10,73,426,4951,41308,658785,7149628,144963451,1937124696, %T A277614 47660873833,756536698360,21888570052623,402400189738576, %U A277614 13384439813823361,279666289640774928,10512823691028429235,246061359639756047008,10314843348672697017801,267328220273408530004896,12363686002049118477390343,351473836594567725961268160,17776996370247936310502612833,550002942283550733215994429376 %N A277614 a(n) is the coefficient of x^n/n! in exp(x + n*x^2/2). %C A277614 From _Peter Luschny_, Jan 17 2023: (Start) %C A277614 a(n) is the number of connection patterns in a telephone system with n possibilities of connection and n subscribers. %C A277614 The number of matchings of a complete multigraph K(n, n). %C A277614 The main diagonal of A359762. (End) %C A277614 Let k be a positive integer. It appears that reducing this sequence modulo k produces an eventually periodic sequence. For example, modulo 10 the sequence becomes [1, 3, 0, 3, 6, 1, 8, 5, 8, 1, 6, 3, 0, 3, 6, 1, 8, 5, 8, 1, 6, 3, 0, 3, 6, ...], with an apparent period [1, 8, 5, 8, 1, 6, 3, 0, 3, 6] of length 10 starting at a(5). - _Peter Bala_, Apr 16 2023 %H A277614 Seiichi Manyama, <a href="/A277614/b277614.txt">Table of n, a(n) for n = 0..416</a> %H A277614 Urszula Bednarz and Małgorzata Wołowiec-Musiał, <a href="https://doi.org/10.3906/mat-1812-108">On a new generalization of telephone numbers</a>, Turkish Journal of Mathematics: Vol. 43: No. 3, (2019). %F A277614 E.g.f.: exp( sqrt(-LambertW(-x^2)) ) / (1 + LambertW(-x^2)). %F A277614 a(n) ~ (exp(1) + (-1)^n*exp(-1)) * n^n / (sqrt(2) * exp(n/2)). - _Vaclav Kotesovec_, Nov 11 2016 %F A277614 a(n) = Sum_{j=0..n, j even} binomial(n, j) * (j - 1)!! * n^(j/2). - _Peter Luschny_, Jan 17 2023 %e A277614 E.g.f.: A(x) = 1 + x + 3*x^2/2! + 10*x^3/3! + 73*x^4/4! + 426*x^5/5! + 4951*x^6/6! + 41308*x^7/7! + 658785*x^8/8! + 7149628*x^9/9! + 144963451*x^10/10! + ... %e A277614 The table of coefficients of x^k/k! in exp(x + n*x^2/2) begins: %e A277614 n=0: 1, 1, 1, 1, 1, 1, 1, 1, 1, ...; %e A277614 n=1: 1, 1, 2, 4, 10, 26, 76, 232, 764, ...; %e A277614 n=2: 1, 1, 3, 7, 25, 81, 331, 1303, 5937, ...; %e A277614 n=3: 1, 1, 4, 10, 46, 166, 856, 3844, 21820, ...; %e A277614 n=4: 1, 1, 5, 13, 73, 281, 1741, 8485, 57233, ...; %e A277614 n=5: 1, 1, 6, 16, 106, 426, 3076, 15856, 123516, ...; %e A277614 n=6: 1, 1, 7, 19, 145, 601, 4951, 26587, 234529, ...; %e A277614 n=7: 1, 1, 8, 22, 190, 806, 7456, 41308, 406652, ...; %e A277614 n=8: 1, 1, 9, 25, 241, 1041, 10681, 60649, 658785, ...; %e A277614 n=9: 1, 1, 10, 28, 298, 1306, 14716, 85240, 1012348, ...; %e A277614 n=10:1, 1, 11, 31, 361, 1601, 19651, 115711, 1491281, ...; ... %e A277614 in which the main diagonal forms this sequence. %e A277614 In the above table, the e.g.f. of the m-th diagonal equals the e.g.f. of this sequence multiplied by ( LambertW(-x^2)/(-x^2) )^(m/2). %e A277614 Example, %e A277614 A(x)*sqrt(-LambertW(-x^2))/x = 1 + x + 4*x^2/2! + 13*x^3/3! + 106*x^4/4! + 601*x^5/5! + 7456*x^6/6! + 60649*x^7/7! + 1012348*x^8/8! + ... %e A277614 equals the e.g.f. of the next lower diagonal in the table. %e A277614 RELATED SERIES. %e A277614 -LambertW(-x^2) = x^2 + 2*x^4/2! + 3^2*x^6/3! + 4^3*x^8/4! + 5^4*x^10/5! + 6^5*x^12/6! + ... + n^(n-1)*x^(2*n)/n! + ... %e A277614 sqrt(-LambertW(-x^2)) = x + 3^0*x^3/(1!*2) + 5*x^5/(2!*2^2) + 7^2*x^7/(3!*2^3) + 9^3*x^9/(4!*2^4) + ... + (2*n+1)^(n-1)*x^(2*n+1)/(n!*2^n) + ... %p A277614 a := n -> add(binomial(n, j) * doublefactorial(j-1) * n^(j/2), j = 0..n, 2): %p A277614 seq(a(n), n = 0..25); # _Peter Luschny_, Jan 17 2023 %o A277614 (PARI) {a(n) = n!*polcoeff( exp(x + n*x^2/2 + x*O(x^n)),n)} %o A277614 for(n=0,30,print1(a(n),", ")) %o A277614 (Python) %o A277614 from math import factorial, comb %o A277614 def oddfactorial(n: int) -> int: %o A277614 return factorial(2 * n) // (2**n * factorial(n)) %o A277614 def a(n: int) -> int: %o A277614 return sum(comb(n, 2*j) * oddfactorial(j) * n**j for j in range(n+1)) %o A277614 print([a(n) for n in range(26)]) # _Peter Luschny_, Jan 17 2023 %Y A277614 Cf. A359762, A362300, A362314, A362319. %K A277614 nonn %O A277614 0,3 %A A277614 _Paul D. Hanna_, Nov 10 2016