A277619 Number of aperiodic necklaces (Lyndon words) with k<=4 black beads and n-k white beads.
1, 2, 1, 2, 3, 6, 8, 14, 19, 28, 37, 51, 64, 84, 103, 129, 155, 189, 222, 265, 307, 359, 411, 474, 536, 611, 685, 772, 859, 960, 1060, 1176, 1291, 1422, 1553, 1701, 1848, 2014, 2179, 2363, 2547, 2751, 2954, 3179, 3403, 3649, 3895, 4164, 4432, 4725, 5017
Offset: 0
Examples
a(6)=8. The aperiodic necklaces are BWWWWW, BBWWWW, BWBWWW, BBBWWW, BBWBWW, BBWWBW, BBBBWW, and BBBWBW.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,2,-1,-2,-1,2,1,-1).
Crossrefs
Programs
-
Mathematica
(* The g.f. for the number of aperiodic necklaces (Lyndon words) with k<=m black beads and n-k white beads is *) gf[x_,m_]:=Sum[x^i/i Plus@@(MoebiusMu[#](1-x^#)^(-(i/#))&/@Divisors[i]),{i,1,m}]+x+1 (* Here we have the case m=4 *)
-
PARI
Vec((1+x-3*x^2-2*x^3+3*x^4+5*x^5-3*x^7+x^9)/((-1+x)^4*(1+x)^2*(1+x+x^2)) + O(x^60)) \\ Colin Barker, Oct 29 2016
Formula
G.f.: (1+x-3*x^2-2*x^3+3*x^4+5*x^5-3*x^7+x^9)/((-1+x)^4*(1+x)^2*(1+x+x^2)).
a(n) = a(n-1)+2*a(n-2)-a(n-3)-2*a(n-4)-a(n-5)+2*a(n-6)+a(n-7)-a(n-8) for n>7. - Colin Barker, Oct 29 2016