cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277619 Number of aperiodic necklaces (Lyndon words) with k<=4 black beads and n-k white beads.

Original entry on oeis.org

1, 2, 1, 2, 3, 6, 8, 14, 19, 28, 37, 51, 64, 84, 103, 129, 155, 189, 222, 265, 307, 359, 411, 474, 536, 611, 685, 772, 859, 960, 1060, 1176, 1291, 1422, 1553, 1701, 1848, 2014, 2179, 2363, 2547, 2751, 2954, 3179, 3403, 3649, 3895, 4164, 4432, 4725, 5017
Offset: 0

Views

Author

Herbert Kociemba, Oct 24 2016

Keywords

Examples

			a(6)=8. The aperiodic necklaces are BWWWWW, BBWWWW, BWBWWW, BBBWWW, BBWBWW, BBWWBW, BBBBWW, and BBBWBW.
		

Crossrefs

Cf. A001037 (k arbitrary), A008747 (k<=3).
Mathematica section of A032168 gives g.f. for k=m black beads and n-k white beads.

Programs

  • Mathematica
    (* The g.f. for the number of aperiodic necklaces (Lyndon words) with k<=m black beads and n-k white beads is *)
    gf[x_,m_]:=Sum[x^i/i Plus@@(MoebiusMu[#](1-x^#)^(-(i/#))&/@Divisors[i]),{i,1,m}]+x+1
    (* Here we have the case m=4 *)
  • PARI
    Vec((1+x-3*x^2-2*x^3+3*x^4+5*x^5-3*x^7+x^9)/((-1+x)^4*(1+x)^2*(1+x+x^2)) + O(x^60)) \\ Colin Barker, Oct 29 2016

Formula

G.f.: (1+x-3*x^2-2*x^3+3*x^4+5*x^5-3*x^7+x^9)/((-1+x)^4*(1+x)^2*(1+x+x^2)).
a(n) = a(n-1)+2*a(n-2)-a(n-3)-2*a(n-4)-a(n-5)+2*a(n-6)+a(n-7)-a(n-8) for n>7. - Colin Barker, Oct 29 2016