cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A277633 Number of aperiodic necklaces (Lyndon words) with k<=8 black beads and n-k white beads.

Original entry on oeis.org

1, 2, 1, 2, 3, 6, 9, 18, 30, 56, 98, 180, 311, 546, 915, 1520, 2440, 3855, 5916, 8935, 13178, 19138, 27264, 38303, 52950, 72311, 97419, 129839, 171066, 223260, 288498, 369708, 469708, 592363, 741433, 921933, 1138761, 1398343, 1706956, 2072696, 2503513, 3009482, 3600515, 4289032, 5087253, 6010305, 7073122, 8293962
Offset: 0

Views

Author

Herbert Kociemba, Oct 24 2016

Keywords

Crossrefs

Cf. A001037 (k arbitrary), A008747 (k<=3), A277619 (k<=4), A277629 (k<=5), A277631 (k<=6).
The Mathematica section of A032168 gives the g.f. for k=m black beads and n-k white beads.

Programs

  • Mathematica
    (* The g.f. for the number of aperiodic necklaces (Lyndon words) with k<=m black beads and n-k white beads. Here we have the case m=8 *)
    gf[x_, m_]:=Sum[x^i/i Plus@@(MoebiusMu[#](1-x^#)^(-(i/#))&/@Divisors[i]), {i, 1, m}]+x+1

Formula

G.f.: 1 + x + x/(1-x) + 1/2*x^2*(1/(1-x)^2 - 1/(1-x^2)) + 1/3*x^3*(1/(1-x)^3 - 1/(1-x^3)) + 1/4*x^4*(1/(1-x)^4 - 1/(1-x^2)^2) + 1/5*x^5*(1/(1-x)^5 - 1/(1-x^5)) + 1/6*x^6*(1/(1-x)^6 - 1/(1-x^2)^3 - 1/(1-x^3)^2 + 1/(1-x^6)) + 1/7*x^7*(1/(1-x)^7 - 1/(1-x^7)) + 1/8*x^8*(1/(1-x)^8 - 1/(1-x^2)^4).
Showing 1-1 of 1 results.