cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277636 Number of 3 X 3 matrices having all elements in {0,...,n} with determinant = permanent.

Original entry on oeis.org

1, 343, 6859, 50653, 226981, 753571, 2048383, 4826809, 10218313, 19902511, 36264691, 62570773, 103161709, 163667323, 251239591, 374805361, 545338513, 776151559, 1083206683, 1485446221, 2005142581, 2668267603, 3504881359, 4549540393, 5841725401, 7426288351
Offset: 0

Views

Author

Indranil Ghosh, Jan 02 2017

Keywords

Comments

a(n) is a perfect cube.

Crossrefs

Cf. A059976 (Number of 3 X 3 singular matrices with all elements in {0,...,n})
Cf. A015237 (Number of 2 X 2 matrices with all elements in {0,...,n} with determinant = permanent )
Cf. A003215.

Programs

  • PARI
    Vec((1 + 336*x + 4479*x^2 + 9808*x^3 + 4479*x^4 + 336*x^5 + x^6) / (1 - x)^7 + O(x^30)) \\ Colin Barker, Jan 02 2017
  • Python
    def a(n):
        return 27*n**6-81*n**5+108*n**4-81*n**3+36*n**2-9*n+1
    

Formula

a(n) = A003215(n-1)^3.
a(n) = (3*n^2 - 3*n + 1)^3.
G.f.: (1 + 336*x + 4479*x^2 + 9808*x^3 + 4479*x^4 + 336*x^5 + x^6) / (1 - x)^7. - Colin Barker, Jan 02 2017