This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277638 #22 Nov 28 2024 15:21:24 %S A277638 1,4,37,520,8803,165292,3320023,69943804,1526981575,34271322316, %T A277638 786371041603,18372739163632,435772652437381,10468369504009060, %U A277638 254238148448959729,6233226769739934964,154092763036678601551,3837301178450916902428,96181503100227675085675 %N A277638 Binomial partial sums of sequence A007004. %F A277638 a(n) = Sum_{k=0..n} binomial(n,k) * multinomial(k,k,k)/(k+1). %F A277638 a(n) = hypergeometric(1/3,2/3,-n; 1,2; -27). %F A277638 a(n) == 1 (mod 3) for all natural n. %F A277638 E.g.f.: exp(t) * hypergeometric(1/3,2/3; 1,2; 27*t). %F A277638 From _Vaclav Kotesovec_, Oct 26 2016: (Start) %F A277638 Recurrence: n*(n+1)*a(n) = 2*(3*n-1)*(5*n-3)*a(n-1) - (n-1)*(57*n-56)*a(n-2) + 28*(n-2)*(n-1)*a(n-3). %F A277638 a(n) ~ 2^(2*n+3) * 7^(n+2) / (3^(11/2) * Pi * n^2). %F A277638 (End) %F A277638 Diff. eq. satisfied by the ordinary g.f.: t*(1-t)^2*(1-28*t)*A''(t)+2*(1-t)*(1-2*t)*(1-28*t)*A'(t)-2*(4-29*t+28*t^2)*A(t)=0. - _Emanuele Munarini_, Oct 28 2016 %F A277638 G.f.: hypergeom([1/3, 2/3],[2],27*x/(1-x))/(1-x). - _Mark van Hoeij_, Nov 28 2024 %t A277638 Table[Sum[Binomial[n, k] Multinomial[k, k, k]/(k+1), {k, 0, n}], {n, 0, 100}] %o A277638 (Maxima) makelist(sum(binomial(n, k)*multinomial_coeff(k, k, k)/(k+1), k, 0, n), n, 0, 12); %Y A277638 Cf. A007004. %K A277638 nonn %O A277638 0,2 %A A277638 _Emanuele Munarini_, Oct 25 2016