This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277643 #14 Apr 20 2018 17:51:53 %S A277643 1,3,7,15,29,53,93,157,257,411,643,987,1491,2219,3259,4731,6793,9657, %T A277643 13605,19005,26341,36245,49533,67261,90789,121855,162679,216087, %U A277643 285655,375903,492527,642671,835283,1081539,1395347,1793987,2298873,2936465,3739401,4747849 %N A277643 Partial sums of number of overpartitions (A015128). %H A277643 Vaclav Kotesovec, <a href="/A277643/b277643.txt">Table of n, a(n) for n = 0..10000</a> %F A277643 a(n) = Sum_{k=0..n} A015128(k). %F A277643 a(n) ~ exp(Pi*sqrt(n))/(4*Pi*sqrt(n)) * (1 + Pi/(4*sqrt(n))). %F A277643 G.f.: 1/(1-x) * Product_{k>=1} (1 + x^k) / (1 - x^k). - _Vaclav Kotesovec_, Mar 25 2017 %F A277643 G.f.: 1/((1 - x)*theta_4(x)), where theta_4() is the Jacobi theta function. - _Ilya Gutkovskiy_, Apr 20 2018 %t A277643 Accumulate[Table[Sum[PartitionsP[n-k]*PartitionsQ[k], {k, 0, n}], {n, 0, 50}]] %t A277643 nmax = 50; CoefficientList[Series[1/(1-x) * Product[(1 + x^k)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Mar 25 2017 *) %Y A277643 Cf. A015128, A000070, A036469, A026906. %Y A277643 Cf. A211971, A002865, A087897. %K A277643 nonn %O A277643 0,2 %A A277643 _Vaclav Kotesovec_, Oct 25 2016