This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277646 #20 Sep 08 2022 08:46:17 %S A277646 1,4,2,1,1,9,4,3,2,1,1,1,1,1,16,8,5,4,3,2,2,2,1,1,1,1,1,1,1,1,25,12,8, %T A277646 6,5,4,3,3,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,36,18,12,9,7,6,5,4,4,3,3, %U A277646 3,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,49,24,16,12,9,8,7,6 %N A277646 Triangle T(n,k) = floor(n^2/k) for 1 <= k <= n^2, read by rows. %H A277646 Jason Kimberley, <a href="/A277646/b277646.txt">Table of n, a(n) for n = 1..10416 (the first 31 rows of the triangle)</a> %F A277646 T(n,k) = A010766(n^2,k). %e A277646 The first five rows of the triangle are: %e A277646 1; %e A277646 4, 2, 1, 1; %e A277646 9, 4, 3, 2, 1, 1, 1, 1, 1; %e A277646 16, 8, 5, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1; %e A277646 25, 12, 8, 6, 5, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1; %t A277646 Table[Floor[n^2/k], {n, 7}, {k, n^2}] // Flatten (* _Michael De Vlieger_, Nov 24 2016 *) %o A277646 (Magma) %o A277646 A277646:=func<n,k|n^2 div k>; %o A277646 [A277646(n,k):k in[1..n^2],n in[1..7]]; %Y A277646 Cf. Related triangles: A010766, A277647, A277648. %Y A277646 Rows of this triangle (with infinite trailing zeros): %Y A277646 T(1,k) = A000007(k-1), %Y A277646 T(2,k) = A033324(k), %Y A277646 T(3,k) = A033329(k), %Y A277646 T(4,k) = A033336(k), %Y A277646 T(5,k) = A033345(k), %Y A277646 T(6,k) = A033356(k), %Y A277646 T(7,k) = A033369(k), %Y A277646 T(8,k) = A033384(k), %Y A277646 T(9,k) = A033401(k), %Y A277646 T(10,k) = A033420(k), %Y A277646 T(100,k) = A033422(k), %Y A277646 T(10^3,k) = A033426(k), %Y A277646 T(10^4,k) = A033424(k). %Y A277646 Columns of this triangle: %Y A277646 T(n,1) = A000290(n), %Y A277646 T(n,2) = A007590(n), %Y A277646 T(n,3) = A000212(n), %Y A277646 T(n,4) = A002620(n), %Y A277646 T(n,5) = A118015(n), %Y A277646 T(n,6) = A056827(n), %Y A277646 T(n,7) = A056834(n), %Y A277646 T(n,8) = A130519(n+1), %Y A277646 T(n,9) = A056838(n), %Y A277646 T(n,10)= A056865(n), %Y A277646 T(n,12)= A174709(n+2). %K A277646 nonn,tabf,easy %O A277646 1,2 %A A277646 _Jason Kimberley_, Nov 09 2016