This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277664 #25 Jan 30 2017 02:53:08 %S A277664 0,0,22,1638,47454,904530,13529862,172576362,1966038698,20583987894, %T A277664 201838423616,1878183167916,16744919877108,144061342087884, %U A277664 1202594886126228,9783039293041644,77823360967288812,607079393002409364,4654603707195506610,35144449267872359562,261740341786424075106 %N A277664 4th-order coefficients of the 1/N-expansion of traces of negative powers of real Wishart matrices with parameter c=2. %C A277664 These numbers provide the 4th order of the 1/N-expansion of traces of powers of a random time-delay matrix in presence of time-reversal symmetry. (The 0th order is instead given by the Large Schröder numbers A006318.) %H A277664 G. C. Greubel, <a href="/A277664/b277664.txt">Table of n, a(n) for n = 0..1000</a> %H A277664 F. D. Cunden, F. Mezzadri, N. Simm and P. Vivo, <a href="http://scitation.aip.org/content/aip/journal/jmp/57/11/10.1063/1.4966642">Large-N expansion for the time-delay matrix of ballistic chaotic cavities</a>, J. Math. Phys. 57, 111901 (2016). %H A277664 J. Kuipers, M. Sieber and D. Savin, <a href="http://dx.doi.org/10.1088/1367-2630/16/12/123018">Efficient semiclassical approach for time delays</a>, New J. Phys. 16 (2014), 123018. %F A277664 G.f.: (2*(36*z^7+20*z^6+24*z^5-219*z^4+216*z^3+163*z^2+6*z))/(y(z)^(11/2)) +(2*(12*z^8-132*z^7+618*z^6-1830*z^5+1840*z^4+720*z^3-134*z^2-6*z))/(y(z)^6), where y(z)= z^2-6*z+1. %F A277664 a(n) ~ 37 * (3*sqrt(2)+4)^(11/2) * n^(9/2) * (1+sqrt(2))^(2*n-8) / (9 * 2^(19/2) * sqrt(Pi)) * (1 - 12*sqrt(2*Pi*(4+3*sqrt(2)))/(37*sqrt(n))). - _Vaclav Kotesovec_, Oct 27 2016 %t A277664 y[z] := z^2 - 6*z + 1; CoefficientList[Series[(2*(36*z^7 + 20*z^6 + 24*z^5 - 219*z^4 + 216*z^3 + 163*z^2 + 6*z))/(y[z]^(11/2)) + (2*(12*z^8 - 132*z^7 + 618*z^6 - 1830*z^5 + 1840*z^4 + 720*z^3 - 134*z^2 - 6*z))/(y[z]^6), {z, 0, 50}],z] (* _G. C. Greubel_, Jan 29 2017 *) %Y A277664 Cf. A006318, A277661, A277662, A277663, A277665. %K A277664 nonn %O A277664 0,3 %A A277664 _Fabio Deelan Cunden_, Oct 26 2016 %E A277664 More terms from _Michel Marcus_, Nov 01 2016