This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277665 #32 Feb 01 2021 02:06:11 %S A277665 0,0,42,6426,291696,7786680,152881422,2451889734,34052988736, %T A277665 424606263984,4868397305884,52193110266396,529596113392928, %U A277665 5132630490667056,47846123752559076,431382289963465044,3778388016547646976,32265703705734047808,269434703704642529046,2205554182120984631622 %N A277665 5th-order coefficients of the 1/N-expansion of traces of negative powers of real Wishart matrices with parameter c=2. %C A277665 These numbers provide the 5th order of the 1/N-expansion of traces of powers of a random time-delay matrix in presence of time-reversal symmetry. (The 0th order is given by the Large Schröder numbers A006318.) %H A277665 G. C. Greubel, <a href="/A277665/b277665.txt">Table of n, a(n) for n = 0..1000</a> %H A277665 F. D. Cunden, F. Mezzadri, N. Simm and P. Vivo, <a href="http://dx.doi.org/10.1063/1.4966642">Large-N expansion for the time-delay matrix of ballistic chaotic cavities</a>, J. Math. Phys. 57, 111901 (2016). %F A277665 G.f.: -(2*z*(96*z^7 - 456*z^6 + 2992*z^5 - 7068*z^4 + 3089*z^3 + 8214*z^2 + 979*z + 12)) / (y(z)^(13/2)) - (2*z*(288*z^8 + 776*z^7 - 336*z^6 - 2916*z^5 + 6276*z^4 - 1312*z^3 - 7560*z^2 - 964*z - 12)) / (y(z)^7), where y(z) = z^2-6*z+1. %t A277665 y[z] := z^2 - 6*z + 1; CoefficientList[Series[-(2*z*(96*z^7 - 456*z^6 + 2992*z^5 - 7068*z^4 + 3089*z^3 + 8214*z^2 + 979*z + 12))/(y[z]^(13/2)) - (2*z*(288*z^8 + 776*z^7 - 336*z^6 - 2916*z^5 + 6276*z^4 - 1312*z^3 - 7560*z^2 - 964*z - 12))/(y[z]^7), {z,0,50}], z] (* _G. C. Greubel_, Jan 29 2017 *) %Y A277665 Cf. A006318 (0th order), A277661 (1st order), A277662 (2nd order), A277663 (3rd order), A277664 (4th order). %K A277665 nonn %O A277665 0,3 %A A277665 _Fabio Deelan Cunden_, Oct 26 2016 %E A277665 More terms from _Michel Marcus_, Oct 30 2016