This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277678 #18 Apr 29 2022 12:14:22 %S A277678 1,2,4,8,16,31,1,60,4,116,12,225,30,1,437,70,5,849,158,17,1649,351,47, %T A277678 1,3202,770,118,6,6217,1669,283,23,12071,3578,664,70,1,23438,7599, %U A277678 1535,189,7,45510,16016,3500,480,30,88368,33545,7876,1182,100,1,171586 %N A277678 Number T(n,k) of binary words of length n containing exactly k (possibly overlapping) occurrences of the subword 11011; triangle T(n,k), n>=0, k=0..max(0,floor((n-2)/3)), read by rows. %H A277678 Alois P. Heinz, <a href="/A277678/b277678.txt">Rows n = 0..350, flattened</a> %F A277678 G.f. of column k=0: -(x^4+x^3+1)/(x^5+x^4-x^3+2*x-1); g.f. of column k>0: x^5*(x^3*(x^2+x-1))^(k-1)/(x^5+x^4-x^3+2*x-1)^(k+1). %F A277678 Sum_{k>=0} k * T(n,k) = A001787(n-4) for n>3. %e A277678 Triangle T(n,k) begins: %e A277678 : 1; %e A277678 : 2; %e A277678 : 4; %e A277678 : 8; %e A277678 : 16; %e A277678 : 31, 1; %e A277678 : 60, 4; %e A277678 : 116, 12; %e A277678 : 225, 30, 1; %e A277678 : 437, 70, 5; %e A277678 : 849, 158, 17; %e A277678 : 1649, 351, 47, 1; %e A277678 : 3202, 770, 118, 6; %p A277678 b:= proc(n, t) option remember; expand( %p A277678 `if`(n=0, 1, b(n-1, [1, 1, 4, 1, 1][t])+ %p A277678 `if`(t=5, x, 1)* b(n-1, [2, 3, 3, 5, 3][t]))) %p A277678 end: %p A277678 T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 1)): %p A277678 seq(T(n), n=0..20); %p A277678 # second Maple program: %p A277678 gf:= k-> `if`(k=0, -(x^4+x^3+1), x^5*(x^3*(x^2+x-1))^(k-1)) %p A277678 /(x^5+x^4-x^3+2*x-1)^(k+1): %p A277678 T:= (n, k)-> coeff(series(gf(k), x, n+1), x, n): %p A277678 seq(seq(T(n, k), k=0..max(0, floor((n-2)/3))), n=0..20); %t A277678 b[n_, t_] := b[n, t] = Expand[ %t A277678 If[n == 0, 1, b[n-1, {1, 1, 4, 1, 1}[[t]]] + %t A277678 If[t == 5, x, 1]*b[n-1, {2, 3, 3, 5, 3}[[t]]]]]; %t A277678 T[n_] := CoefficientList[b[n, 1], x]; %t A277678 Table[T[n], {n, 0, 20}] // Flatten (* _Jean-François Alcover_, Apr 29 2022, after _Alois P. Heinz_ *) %Y A277678 Column k=0 gives A210021. %Y A277678 Row sums give A000079. %Y A277678 Row sums except column k=0 give A276785. %Y A277678 Cf. A001787, A002264. %K A277678 nonn,tabf %O A277678 0,2 %A A277678 _Alois P. Heinz_, Oct 26 2016