A277722 a(n) = floor(n*tau^2) where tau is the tribonacci constant (A058265).
0, 3, 6, 10, 13, 16, 20, 23, 27, 30, 33, 37, 40, 43, 47, 50, 54, 57, 60, 64, 67, 71, 74, 77, 81, 84, 87, 91, 94, 98, 101, 104, 108, 111, 115, 118, 121, 125, 128, 131, 135, 138, 142, 145, 148, 152, 155, 158, 162, 165, 169, 172, 175, 179, 182, 186, 189, 192, 196, 199, 202, 206, 209, 213, 216, 219
Offset: 0
Keywords
Links
- JungHwan Min, Table of n, a(n) for n = 0..10000
- A. J. Hildebrand, Junxian Li, Xiaomin Li and Yun Xie, Almost Beatty Partitions, arXiv:1809.08690 [math.NT], 2018.
Programs
-
Maple
A277722 := proc(n) a276800 := 3.3829757679062374941227085364550345869493820437485761820195626772353718960099402922235933340043661396041006 ; floor(n*a276800) ; end proc: seq(A277722(n),n=0..100) ; # R. J. Mathar, Nov 02 2016
-
Mathematica
A277722[n_] := Floor[n (1/3 (1 + (19 - 3 Sqrt[33])^(1/3) + (19 + 3 Sqrt[33])^(1/3)))^2]; Array[A277722, 66, 0] (* JungHwan Min, Nov 06 2016 *)