A277728 Numbers not in any of A158919, A277722, A277723.
2, 4, 8, 15, 17, 19, 21, 26, 28, 32, 35, 39, 41, 46, 48, 52, 59, 61, 63, 65, 70, 72, 76, 78, 83, 85, 89, 92, 96, 100, 102, 107, 109, 113, 116, 120, 122, 127, 129, 133, 140, 144, 146, 151, 153, 157, 159, 164, 166, 170, 173, 177, 181, 184, 188, 190, 195, 197, 201, 203, 208, 210, 212, 214, 221
Offset: 1
Keywords
Links
- Jean-François Alcover, Table of n, a(n) for n = 1..2955
- S. Beatty, A. Ostrowski, J. Hyslop, and A. C. Aitken, Problems and Solutions: Solutions: 3177, Amer. Math. Monthly, 34 (1927), pp. 159-160.
- R. L. Graham, On a theorem of Uspensky, Amer. Math. Mnthly, 70 (1963): 407-409.
- A. J. Hildebrand, Junxian Li, Xiaomin Li, Yun Xie, Almost Beatty Partitions, arXiv:1809.08690 [math.NT], 2018.
- J. V. Uspensky, On a problem arising out of the theory of a certain game, Amer. Math. Mnthly., 34 (1927), 516-521.
Crossrefs
Programs
-
Mathematica
maxTerm = 10000; a19[n_] := Floor[n*Root[#^3 - #^2 - # - 1&, 1]]; a22[n_] := Floor[n*Root[#^3 - 3 #^2 - # - 1&, 1]]; a23[n_] := Floor[n*Root[#^3 - 7 #^2 + 5 # - 1&, 1]]; A19 = Reap[k = 1; While[a19[k] <= maxTerm, Sow[a19[k++]]]][[2, 1]]; A22 = Reap[k = 1; While[a22[k] <= maxTerm, Sow[a22[k++]]]][[2, 1]]; A23 = Reap[k = 1; While[a23[k] <= maxTerm, Sow[a23[k++]]]][[2, 1]]; Select[Range[maxTerm], FreeQ[A19, #] && FreeQ[A22, #] && FreeQ[A23, #]&] (* Jean-François Alcover, Dec 06 2018 *)
Comments