A277729 Irregular triangle read by rows: T(n,k) = number of times a gap of k occurs between the first n successive primes.
1, 1, 1, 1, 2, 1, 2, 0, 1, 1, 3, 0, 1, 1, 3, 0, 2, 1, 4, 0, 2, 1, 4, 0, 3, 1, 4, 0, 3, 0, 1, 1, 5, 0, 3, 0, 1, 1, 5, 0, 3, 0, 2, 1, 5, 0, 4, 0, 2, 1, 6, 0, 4, 0, 2, 1, 6, 0, 5, 0, 2, 1, 6, 0, 5, 0, 3, 1, 6, 0, 5, 0, 4, 1, 7, 0, 5, 0, 4, 1, 7, 0, 5, 0, 5, 1, 7, 0, 6, 0, 5, 1, 8, 0, 6, 0, 5, 1, 8, 0, 6, 0, 6, 1, 8, 0, 7, 0, 6, 1, 8, 0, 7, 0, 7, 1, 8, 0, 7, 0, 7, 0, 1, 1, 8, 0, 8, 0, 7, 0, 1, 1, 9, 0
Offset: 2
Examples
Triangle begins: 1, 1, 1, 1, 2, 1, 2, 0, 1, 1, 3, 0, 1, <- gaps in 2,3,5,7,11,13 are 1, 2 (3 times), 4 (once) 1, 3, 0, 2, 1, 4, 0, 2, 1, 4, 0, 3, 1, 4, 0, 3, 0, 1, 1, 5, 0, 3, 0, 1, 1, 5, 0, 3, 0, 2, 1, 5, 0, 4, 0, 2, 1, 6, 0, 4, 0, 2, 1, 6, 0, 5, 0, 2, 1, 6, 0, 5, 0, 3, 1, 6, 0, 5, 0, 4, 1, 7, 0, 5, 0, 4, 1, 7, 0, 5, 0, 5, 1, 7, 0, 6, 0, 5, 1, 8, 0, 6, 0, 5, ...
Links
- Robert Israel, Table of n, a(n) for n = 2..10032 (rows 2 to 410, flattened)
Programs
-
Maple
N:= 30: # for rows 2 to N res:= 1; p:= 3; R:= <1>; for n from 2 to N do pp:= nextprime(p); d:= pp - p; p:= pp; if d <= LinearAlgebra:-Dimension(R) then R[d]:= R[d]+1 else R(d):= 1 fi; res:= res, op(convert(R,list)); od: res; # Robert Israel, Nov 16 2016