This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277732 #16 Mar 20 2023 06:24:23 %S A277732 1,3,6,8,11,12,14,17,19,22,23,25,27,30,32,35,36,38,41,43,46,47,49,51, %T A277732 54,56,59,61,64,65,67,70,72,75,76,78,80,83,85,88,89,91,94,96,99,100, %U A277732 102,104,107,109,112,114,117,118,120,123,125,128,129,131,134,136,139,140,142,144,147,149,152,153 %N A277732 Positions of 0's in A277731. %C A277732 {A277732, A277733, A277734} forms a three-way partition of the positive integers, similar to {A003144, A003145, A003146}. %H A277732 N. J. A. Sloane, <a href="/A277732/b277732.txt">Table of n, a(n) for n = 1..20000</a> %p A277732 with(ListTools); %p A277732 T:=proc(S) Flatten(subs( {0=[0,1], 1=[0,1,2], 2=[0]}, S)); end; %p A277732 S:=[0]; %p A277732 for n from 1 to 14 do S:=T(S); od: %p A277732 S; # A277731 %p A277732 p0:=[]: p1:=[]: p2:=[]: %p A277732 for i from 1 to nops(S) do %p A277732 j:=S[i]; %p A277732 if j=0 then p0:=[op(p0),i]; %p A277732 elif j=1 then p1:=[op(p1),i]; %p A277732 else p2:=[op(p2),i]; fi: od: %p A277732 p0; # A277732 %p A277732 p1; # A277733 %p A277732 p2; # A277734 %t A277732 m = 1000; (* number of terms of A277731 *) %t A277732 S[1] = {0}; %t A277732 S[n_] := S[n] = SubstitutionSystem[{0 -> {0, 1}, 1 -> {0, 1, 2}, 2 -> {0}}, S[n - 1]]; %t A277732 For[n = 2, True, n++, If[PadRight[S[n], m] == PadRight[S[n - 1], m], Print["n = ", n]; Break[]]]; %t A277732 A277731 = Take[S[n], m]; %t A277732 Position[A277731, 0] // Flatten (* _Jean-François Alcover_, Mar 20 2023 *) %Y A277732 Cf. A052980, A277731, A277733, A277734. %Y A277732 Cf. also A003144, A003145, A003146. %K A277732 nonn %O A277732 1,2 %A A277732 _N. J. A. Sloane_, Nov 07 2016