A277735 Unique fixed point of the morphism 0 -> 01, 1 -> 20, 2 -> 0.
0, 1, 2, 0, 0, 0, 1, 0, 1, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 0, 1, 0, 1, 2, 0, 0, 0, 1, 0, 1, 2, 0, 0, 0, 1, 0, 1, 0, 1, 2, 0, 0, 1, 2, 0, 0, 0, 1, 0, 1, 0, 1, 2, 0, 0, 1, 2, 0, 0, 0, 1, 0, 1, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 0, 1, 0, 1, 2, 0, 0, 0, 1, 0, 1, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1
Offset: 1
Keywords
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..20000
- Y.-K. Huang, Z.-Y. Wen, Kernel words and gap sequence of the Tribonacci sequence, Acta Mathematica Scientia (Series B). 36.1 (2016) 173-194.
- Victor F. Sirvent, Semigroups and the self-similar structure of the flipped tribonacci substitution, Applied Math. Letters, 12 (1999), 25-29.
- Victor F. Sirvent, The common dynamics of the Tribonacci substitutions, Bulletin of the Belgian Mathematical Society-Simon Stevin 7.4 (2000): 571-582.
- Index entries for sequences that are fixed points of mappings
Programs
-
Maple
with(ListTools); T:=proc(S) Flatten(subs( {0=[0,1], 1=[2,0], 2=[0]}, S)); end; S:=[0]; for n from 1 to 10 do S:=T(S); od: S;
-
Mathematica
s = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {2, 0}, 2 -> 0}] &, {0}, 10] (* A277735 *) Flatten[Position[s, 0]] (* A277736 *) Flatten[Position[s, 1]] (* A277737 *) Flatten[Position[s, 2]] (* A277738 *) (* Clark Kimberling, May 21 2017 *)
Extensions
Name clarified by Michel Dekking, Oct 03 2019
Comments