This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277741 #34 Jun 15 2025 16:55:21 %S A277741 1,1,1,1,2,1,2,5,5,2,3,13,20,13,3,6,35,83,83,35,6,12,104,340,504,340, %T A277741 104,12,27,315,1401,2843,2843,1401,315,27,65,1021,5809,15578,21420, %U A277741 15578,5809,1021,65,175,3407,24299,82546,149007,149007,82546,24299,3407,175 %N A277741 Array read by antidiagonals: A(n,k) is the number of unsensed planar maps with n vertices and k faces, n >= 1, k >= 1. %C A277741 A(n,k) is also the number of multiquadrangulations of the sphere with n stable equilibria and k unstable equilibria. %C A277741 From _Andrew Howroyd_, Jan 13 2025: (Start) %C A277741 The planar maps considered are connected and may contain loops and parallel edges. %C A277741 The number of edges is n + k - 2. (End) %D A277741 Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, chapter 5. %H A277741 Richard Kapolnai, Gabor Domokos, and Timea Szabo, <a href="http://dx.doi.org/10.3311/PPee.7074">Generating spherical multiquadrangulations by restricted vertex splittings and the reducibility of equilibrium classes</a>, Periodica Polytechnica Electrical Engineering, 56(1):11-10, 2012. Also <a href="https://arxiv.org/abs/1206.1698">arXiv:1206.1698 [cs.DM]</a>, 2012. See Table 1. %H A277741 Timothy R. Walsh, <a href="/A007401/a007401.pdf">Number of sensed planar maps with n edges and m vertices</a>, pp. 11-20. %H A277741 Nicholas C. Wormald, <a href="http://dx.doi.org/10.1016/0012-365X(81)90238-7">Counting unrooted planar maps</a>, Discrete Math. 36 (1981), no. 2, 205-225. %F A277741 A(n,k) = A(k,n). %F A277741 A(n,k) = (A379430(n,k) + A379431(n,k))/2. - _Andrew Howroyd_, Jan 14 2025 %e A277741 The array begins: %e A277741 1, 1, 1, 2, 3, 6, 12, 27, 65, ... %e A277741 1, 2, 5, 13, 35, 104, 315, 1021, ... %e A277741 1, 5, 20, 83, 340, 1401, 5809, ... %e A277741 2, 13, 83, 504, 2843, 15578, ... %e A277741 3, 35, 340, 2843, 21420, ... %e A277741 6, 104, 1401, 15578, ... %e A277741 12, 315, 5809, ... %e A277741 27, 1021, ... %e A277741 65, ... %e A277741 ... %e A277741 As a triangle, rows give the number of edges (first row is 0 edges): %e A277741 1; %e A277741 1, 1; %e A277741 1, 2, 1; %e A277741 2, 5, 5, 2; %e A277741 3, 13, 20, 13, 3; %e A277741 6, 35, 83, 83, 35, 6; %e A277741 12, 104, 340, 504, 340, 104, 12; %e A277741 27, 315, 1401, 2843, 2843, 1401, 315, 27; %e A277741 65, 1021, 5809, 15578, 21420, 15578, 5809, 1021, 65; %e A277741 ... %Y A277741 Antidiagonal sums are A006385. %Y A277741 Rows 1..2 (equally, columns 1..2) are A006082, A380239. %Y A277741 Cf. A269920 (rooted), A379430 (sensed), A379431 (achiral), A379432 (2-connected), A384963 (simple). %K A277741 nonn,tabl %O A277741 1,5 %A A277741 _N. J. A. Sloane_, Nov 07 2016 %E A277741 Missing terms inserted and definition edited by _Andrew Howroyd_, Jan 13 2025