A277761 Number of n X 2 0..2 arrays with every element equal to some element at offset (-1,-1) (-1,0) (-1,1) (0,-1) (0,1) or (1,0) both plus 1 mod 3 and minus 1 mod 3, with new values introduced in order 0..2.
0, 1, 2, 14, 56, 284, 1304, 6248, 29408, 139472, 659360, 3121376, 14768000, 69887936, 330703232, 1564924544, 7405262336, 35042157824, 165821110784, 784674242048, 3713117739008, 17570663078912, 83145267845120, 393447636985856
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..1. .0..1. .0..1. .0..1. .0..1. .0..1. .0..1. .0..1. .0..1. .0..1 ..2..2. .2..2. .2..2. .2..2. .2..2. .2..2. .2..2. .2..2. .2..2. .2..2 ..2..0. .0..1. .1..2. .0..1. .1..0. .0..1. .0..1. .2..1. .1..0. .1..0 ..1..1. .2..2. .0..0. .2..0. .0..2. .1..2. .2..1. .0..0. .1..2. .2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 2 of A277767.
Formula
Empirical: a(n) = 4*a(n-1) + 6*a(n-2) - 12*a(n-3).
Conjectures from Colin Barker, Feb 05 2019: (Start)
G.f.: x^2*(1 - 2*x) / ((1 + 2*x)*(1 - 6*x + 6*x^2)).
a(n) = (3*(-1)^n*2^(2+n) - (-5+sqrt(3))*(3+sqrt(3))^n + (3-sqrt(3))^n*(5+sqrt(3))) / 132.
(End)