cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277761 Number of n X 2 0..2 arrays with every element equal to some element at offset (-1,-1) (-1,0) (-1,1) (0,-1) (0,1) or (1,0) both plus 1 mod 3 and minus 1 mod 3, with new values introduced in order 0..2.

Original entry on oeis.org

0, 1, 2, 14, 56, 284, 1304, 6248, 29408, 139472, 659360, 3121376, 14768000, 69887936, 330703232, 1564924544, 7405262336, 35042157824, 165821110784, 784674242048, 3713117739008, 17570663078912, 83145267845120, 393447636985856
Offset: 1

Views

Author

R. H. Hardin, Oct 29 2016

Keywords

Examples

			Some solutions for n=4:
..0..1. .0..1. .0..1. .0..1. .0..1. .0..1. .0..1. .0..1. .0..1. .0..1
..2..2. .2..2. .2..2. .2..2. .2..2. .2..2. .2..2. .2..2. .2..2. .2..2
..2..0. .0..1. .1..2. .0..1. .1..0. .0..1. .0..1. .2..1. .1..0. .1..0
..1..1. .2..2. .0..0. .2..0. .0..2. .1..2. .2..1. .0..0. .1..2. .2..2
		

Crossrefs

Column 2 of A277767.

Formula

Empirical: a(n) = 4*a(n-1) + 6*a(n-2) - 12*a(n-3).
Conjectures from Colin Barker, Feb 05 2019: (Start)
G.f.: x^2*(1 - 2*x) / ((1 + 2*x)*(1 - 6*x + 6*x^2)).
a(n) = (3*(-1)^n*2^(2+n) - (-5+sqrt(3))*(3+sqrt(3))^n + (3-sqrt(3))^n*(5+sqrt(3))) / 132.
(End)