A277767 T(n,k)=Number of nXk 0..2 arrays with every element equal to some element at offset (-1,-1) (-1,0) (-1,1) (0,-1) (0,1) or (1,0) both plus 1 mod 3 and minus 1 mod 3, with new values introduced in order 0..2.
0, 0, 0, 0, 1, 0, 0, 4, 2, 0, 0, 18, 17, 14, 0, 0, 80, 204, 330, 56, 0, 0, 356, 1989, 9741, 3666, 284, 0, 0, 1584, 21141, 275018, 270291, 46289, 1304, 0, 0, 7048, 220549, 7824415, 20049229, 8971150, 560809, 6248, 0, 0, 31360, 2292380, 221983169, 1487830718
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..1..2..0. .0..1..2..0. .0..1..2..0. .0..1..2..0. .0..1..2..0 ..2..1..1..1. .2..0..0..1. .2..2..0..1. .2..0..1..1. .2..2..1..1 ..2..0..2..0. .0..1..0..2. .1..0..0..1. .0..1..2..0. .1..0..2..0 ..1..2..1..0. .2..2..1..2. .2..1..2..2. .1..2..1..1. .2..0..1..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..112
Crossrefs
Row 2 is A090017(n-1).
Formula
Empirical for column k:
k=2: a(n) = 4*a(n-1) +6*a(n-2) -12*a(n-3)
k=3: [order 11]
k=4: [order 44] for n>45
Empirical for row n:
n=2: a(n) = 4*a(n-1) +2*a(n-2)
n=3: [order 18]
n=4: [order 98]
Comments