cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277790 Numerator of sum of reciprocals of proper divisors of n.

This page as a plain text file.
%I A277790 #23 Feb 16 2025 08:33:37
%S A277790 0,1,1,3,1,11,1,7,4,17,1,9,1,23,23,15,1,19,1,41,31,35,1,59,6,41,13,55,
%T A277790 1,71,1,31,47,53,47,5,1,59,55,89,1,95,1,83,77,71,1,41,8,46,71,97,1,
%U A277790 119,71,17,79,89,1,167,1,95,103,63,83,13,1,125,95,143,1,97,1,113,41,139,95,167,1,37
%N A277790 Numerator of sum of reciprocals of proper divisors of n.
%H A277790 Antti Karttunen, <a href="/A277790/b277790.txt">Table of n, a(n) for n = 1..16384</a>
%H A277790 Antti Karttunen, <a href="/A277790/a277790.txt">Data supplement: n, a(n) computed for n = 1..65537</a>
%H A277790 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RestrictedDivisorFunction.html">Restricted Divisor Function</a>
%H A277790 <a href="/index/Su#sums_of_divisors">Index entries for sequences related to sums of divisors</a>
%F A277790 a(n) = numerator(Sum_{d|n, d<n} 1/d).
%F A277790 a(n) = numerator((sigma_1(n)-1)/n).
%F A277790 a(p) = 1 when p is prime.
%F A277790 a(p^k) = (p^k - 1)/(p - 1) when p is prime.
%F A277790 Dirichlet g.f.: (zeta(s) - 1)*zeta(s+1) (for fraction Sum_{d|n, d<n} 1/d).
%e A277790 a(4) = 3 because 4 has 3 divisors {1,2,4} therefore 2 proper divisors {1,2} and 1/1 + 1/2 = 3/2.
%e A277790 0, 1, 1, 3/2, 1, 11/6, 1, 7/4, 4/3, 17/10, 1, 9/4, 1, 23/14, 23/15, 15/8, 1, 19/9, 1, 41/20, 31/21, 35/22, 1, 59/24, 6/5, 41/26, 13/9, 55/28, ...
%p A277790 with(numtheory): P:=proc(n) local a,k; a:=divisors(n) minus {n};
%p A277790 numer(add(1/a[k],k=1..nops(a))); end: seq(P(i),i=1..80); # _Paolo P. Lava_, Oct 17 2018
%t A277790 Table[Numerator[DivisorSigma[-1, n] - 1/n], {n, 1, 80}]
%t A277790 Table[Numerator[(DivisorSigma[1, n] - 1)/n], {n, 1, 80}]
%o A277790 (PARI) a(n) = numerator((sigma(n)-1)/n); \\ _Michel Marcus_, Nov 01 2016
%o A277790 (Python)
%o A277790 from math import gcd
%o A277790 from sympy import divisor_sigma
%o A277790 def A277790(n): return (m:=divisor_sigma(n)-1)//gcd(n,m) # _Chai Wah Wu_, Jul 18 2022
%Y A277790 Cf. A000203, A001065, A017665, A017666, A277791 (denominators).
%K A277790 nonn,frac
%O A277790 1,4
%A A277790 _Ilya Gutkovskiy_, Oct 31 2016