cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277791 Denominator of sum of reciprocals of proper divisors of n.

This page as a plain text file.
%I A277791 #25 Feb 16 2025 08:33:37
%S A277791 1,1,1,2,1,6,1,4,3,10,1,4,1,14,15,8,1,9,1,20,21,22,1,24,5,26,9,28,1,
%T A277791 30,1,16,33,34,35,2,1,38,39,40,1,42,1,44,45,46,1,16,7,25,51,52,1,54,
%U A277791 55,8,57,58,1,60,1,62,63,32,65,6,1,68,69,70,1,36,1,74,25,76,77,78,1,16
%N A277791 Denominator of sum of reciprocals of proper divisors of n.
%H A277791 Robert Israel, <a href="/A277791/b277791.txt">Table of n, a(n) for n = 1..10000</a>
%H A277791 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RestrictedDivisorFunction.html">Restricted Divisor Function</a>
%H A277791 <a href="/index/Su#sums_of_divisors">Index entries for sequences related to sums of divisors</a>
%F A277791 a(n) = denominator(Sum_{d|n, d<n} 1/d).
%F A277791 a(n) = denominator((sigma_1(n)-1)/n).
%F A277791 a(p) = 1 when p is prime.
%F A277791 a(p^k) = p^(k-1).
%F A277791 Dirichlet g.f.: (zeta(s) - 1)*zeta(s+1) (for fraction Sum_{d|n, d<n} 1/d).
%e A277791 a(4) = 2 because 4 has 3 divisors {1,2,4} therefore 2 proper divisors {1,2} and 1/1 + 1/2 = 3/2.
%e A277791 0, 1, 1, 3/2, 1, 11/6, 1, 7/4, 4/3, 17/10, 1, 9/4, 1, 23/14, 23/15, 15/8, 1, 19/9, 1, 41/20, 31/21, 35/22, 1, 59/24, 6/5, 41/26, 13/9, 55/28, ...
%p A277791 with(numtheory): P:=proc(n) local a,k; a:=divisors(n) minus {n};
%p A277791 denom(add(1/a[k],k=1..nops(a))); end: seq(P(i),i=1..80); # _Paolo P. Lava_, Oct 17 2018
%t A277791 Table[Denominator[DivisorSigma[-1, n] - 1/n], {n, 1, 80}]
%t A277791 Table[Denominator[(DivisorSigma[1, n] - 1)/n], {n, 1, 80}]
%o A277791 (PARI) a(n) = denominator((sigma(n)-1)/n); \\ _Michel Marcus_, Nov 01 2016
%o A277791 (Python)
%o A277791 from math import gcd
%o A277791 from sympy import divisor_sigma
%o A277791 def A277791(n): return n//gcd(n,divisor_sigma(n)-1) # _Chai Wah Wu_, Jul 18 2022
%Y A277791 Cf. A000203, A001065, A017665, A017666, A277790 (numerators), A281086, A355003, A355694 (Dirichlet inverse), A355815.
%K A277791 nonn,frac,look
%O A277791 1,4
%A A277791 _Ilya Gutkovskiy_, Oct 31 2016