A277797 Binary representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 1", based on the 5-celled von Neumann neighborhood.
1, 0, 1, 1100, 1, 111100, 1, 11111100, 1, 1111111100, 1, 111111111100, 1, 11111111111100, 1, 1111111111111100, 1, 111111111111111100, 1, 11111111111111111100, 1, 1111111111111111111100, 1, 111111111111111111111100, 1, 11111111111111111111111100, 1
Offset: 0
References
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
Links
- Robert Price, Table of n, a(n) for n = 0..126
- Robert Price, Diagrams of first 20 stages
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- S. Wolfram, A New Kind of Science
- Index entries for sequences related to cellular automata
- Index to 2D 5-Neighbor Cellular Automata
- Index to Elementary Cellular Automata
Programs
-
Mathematica
CAStep[rule_,a_]:=Map[rule[[10-#]]&,ListConvolve[{{0,2,0},{2,1,2},{0,2,0}},a,2],{2}]; code=1; stages=128; rule=IntegerDigits[code,2,10]; g=2*stages+1; (* Maximum size of grid *) a=PadLeft[{{1}},{g,g},0,Floor[{g,g}/2]]; (* Initial ON cell on grid *) ca=a; ca=Table[ca=CAStep[rule,ca],{n,1,stages+1}]; PrependTo[ca,a]; (* Trim full grid to reflect growth by one cell at each stage *) k=(Length[ca[[1]]]+1)/2; ca=Table[Table[Part[ca[[n]][[j]],Range[k+1-n,k-1+n]],{j,k+1-n,k-1+n}],{n,1,k}]; Table[FromDigits[Part[ca[[i]][[i]],Range[1,i]],10], {i,1,stages-1}]
Formula
Conjectures from Colin Barker, Nov 01 2016: (Start)
G.f.: (1 - 100*x^2 + 1100*x^3)/((1 - x)*(1 + x)*(1 - 10*x)*(1 + 10*x)).
a(n) = 101*a(n-2) - 100*a(n-4) for n>3.
a(n) = (-91+109*(-1)^n+10^(1+n)-(-1)^n*10^(1+n))/18. (End)
Comments